BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28919261)

  • 21. Chemically Defined Neural Conversion of Human Pluripotent Stem Cells.
    Chen Y; Tristan CA; Mallanna SK; Ormanoglu P; Titus S; Simeonov A; Singeç I
    Methods Mol Biol; 2019; 1919():59-72. PubMed ID: 30656621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural crest development is regulated by the transcription factor Sox9.
    Cheung M; Briscoe J
    Development; 2003 Dec; 130(23):5681-93. PubMed ID: 14522876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of Neural Crest Progenitors from Human Pluripotent Stem Cells.
    Abu-Bonsrah KD; Viventi S; Newgreen DF; Dottori M
    Methods Mol Biol; 2019; 1976():37-47. PubMed ID: 30977063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Generation of Trunk Neural Crest and Sympathetic Neurons from Human Pluripotent Stem Cells Via a Neuromesodermal Axial Progenitor Intermediate.
    Frith TJR; Tsakiridis A
    Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e81. PubMed ID: 30688409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium.
    Stottmann RW; Choi M; Mishina Y; Meyers EN; Klingensmith J
    Development; 2004 May; 131(9):2205-18. PubMed ID: 15073157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.
    Leung AW; Murdoch B; Salem AF; Prasad MS; Gomez GA; García-Castro MI
    Development; 2016 Feb; 143(3):398-410. PubMed ID: 26839343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells.
    Menendez L; Yatskievych TA; Antin PB; Dalton S
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19240-5. PubMed ID: 22084120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling.
    Kléber M; Lee HY; Wurdak H; Buchstaller J; Riccomagno MM; Ittner LM; Suter U; Epstein DJ; Sommer L
    J Cell Biol; 2005 Apr; 169(2):309-20. PubMed ID: 15837799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional program of bone morphogenetic protein-2-induced epithelial and smooth muscle differentiation of pluripotent human embryonal carcinoma cells.
    Chadalavada RS; Houldsworth J; Olshen AB; Bosl GJ; Studer L; Chaganti RS
    Funct Integr Genomics; 2005 Apr; 5(2):59-69. PubMed ID: 15690164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs.
    Mica Y; Lee G; Chambers SM; Tomishima MJ; Studer L
    Cell Rep; 2013 Apr; 3(4):1140-52. PubMed ID: 23583175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic AMP signaling functions as a bimodal switch in sympathoadrenal cell development in cultured primary neural crest cells.
    Bilodeau ML; Boulineau T; Hullinger RL; Andrisani OM
    Mol Cell Biol; 2000 May; 20(9):3004-14. PubMed ID: 10757785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells.
    Kaartinen V; Dudas M; Nagy A; Sridurongrit S; Lu MM; Epstein JA
    Development; 2004 Jul; 131(14):3481-90. PubMed ID: 15226263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture.
    Aihara Y; Hayashi Y; Hirata M; Ariki N; Shibata S; Nagoshi N; Nakanishi M; Ohnuma K; Warashina M; Michiue T; Uchiyama H; Okano H; Asashima M; Furue MK
    Int J Dev Biol; 2010; 54(8-9):1287-94. PubMed ID: 20711997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-SMAD Inhibition/WNT Activation-Based Methods to Induce Neural Crest and Derivatives from Human Pluripotent Stem Cells.
    Chambers SM; Mica Y; Lee G; Studer L; Tomishima MJ
    Methods Mol Biol; 2016; 1307():329-43. PubMed ID: 24301074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of human pluripotent stem cells for the in vitro derivation of cranial placodes and neural crest cells.
    Borchin BE; Barberi T
    Curr Top Dev Biol; 2015; 111():497-514. PubMed ID: 25662270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-Down Inhibition (TDi) and Baseline Activation (BLa): Controlling Signal Transduction When Endogenous Cytokines are Ruining Your Differentiation.
    Hackland J
    Curr Protoc Stem Cell Biol; 2019 Dec; 51(1):e98. PubMed ID: 31756052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural crest inducing signals.
    Basch ML; Bronner-Fraser M
    Adv Exp Med Biol; 2006; 589():24-31. PubMed ID: 17076273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural Crest Cell Models of Development and Toxicity: Cytotoxicity Assay Using Human Pluripotent Stem Cell-Derived Cranial Neural Crest Cell Model.
    Suga M; Furue MK
    Methods Mol Biol; 2019; 1965():35-48. PubMed ID: 31069667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
    Weber M; Apostolova G; Widera D; Mittelbronn M; Dechant G; Kaltschmidt B; Rohrer H
    Stem Cells; 2015 Feb; 33(2):574-88. PubMed ID: 25331182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human neural crest stem cells derived from human pluripotent stem cells.
    Liu Q; Swistowski A; Zeng X
    Methods Mol Biol; 2014; 1210():79-90. PubMed ID: 25173162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.