These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28919846)

  • 1. A Methylidene Group in the Phosphonic Acid Analogue of Phenylalanine Reverses the Enantiopreference of Binding to Phenylalanine Ammonia-Lyases.
    Bata Z; Qian R; Roller A; Horak J; Bencze LC; Paizs C; Hammerschmidt F; Vértessy BG; Poppe L
    Adv Synth Catal; 2017 Jun; 359(12):2109-2120. PubMed ID: 28919846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of unnatural amino acids with ammonia-lyases and 2,3-aminomutases.
    Poppe L; Paizs C; Kovács K; Irimie FD; Vértessy B
    Methods Mol Biol; 2012; 794():3-19. PubMed ID: 21956553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas fluorescens Strain R124 Encodes Three Different MIO Enzymes.
    Csuka P; Juhász V; Kohári S; Filip A; Varga A; Sátorhelyi P; Bencze LC; Barton H; Paizs C; Poppe L
    Chembiochem; 2018 Feb; 19(4):411-418. PubMed ID: 29193598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.
    Turner NJ
    Curr Opin Chem Biol; 2011 Apr; 15(2):234-40. PubMed ID: 21131229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and Structural Analysis of Substrate Specificity of a Phenylalanine Ammonia-Lyase.
    Jun SY; Sattler SA; Cortez GS; Vermerris W; Sattler SE; Kang C
    Plant Physiol; 2018 Feb; 176(2):1452-1468. PubMed ID: 29196539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases.
    Louie GV; Bowman ME; Moffitt MC; Baiga TJ; Moore BS; Noel JP
    Chem Biol; 2006 Dec; 13(12):1327-38. PubMed ID: 17185228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of the reactions catalyzed by histidine and phenylalanine ammonia lyases.
    Viergutz S; Rétey J
    Chem Biodivers; 2004 Feb; 1(2):296-302. PubMed ID: 17191848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group.
    Rétey J
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):179-84. PubMed ID: 12686130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis.
    Calabrese JC; Jordan DB; Boodhoo A; Sariaslani S; Vannelli T
    Biochemistry; 2004 Sep; 43(36):11403-16. PubMed ID: 15350127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of MIO-based aminomutases in beta-amino acid biosynthesis.
    Christianson CV; Montavon TJ; Festin GM; Cooke HA; Shen B; Bruner SD
    J Am Chem Soc; 2007 Dec; 129(51):15744-5. PubMed ID: 18052279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylidene-imidazolone: a novel electrophile for substrate activation.
    Poppe L
    Curr Opin Chem Biol; 2001 Oct; 5(5):512-24. PubMed ID: 11578924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the tyrosine ammonia lyase reaction-tandem nucleophilic and electrophilic enhancement by a proton transfer.
    Pilbák S; Farkas Ö; Poppe L
    Chemistry; 2012 Jun; 18(25):7793-802. PubMed ID: 22573540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new member of the 4-methylideneimidazole-5-one-containing aminomutase family from the enediyne kedarcidin biosynthetic pathway.
    Huang SX; Lohman JR; Huang T; Shen B
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8069-74. PubMed ID: 23633564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).
    Dreßen A; Hilberath T; Mackfeld U; Billmeier A; Rudat J; Pohl M
    J Biotechnol; 2017 Sep; 258():148-157. PubMed ID: 28392421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-methylideneimidazole-5-one-containing aminomutases in enediyne biosynthesis.
    Lohman JR; Shen B
    Methods Enzymol; 2012; 516():299-319. PubMed ID: 23034235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase.
    Schroeder AC; Kumaran S; Hicks LM; Cahoon RE; Halls C; Yu O; Jez JM
    Phytochemistry; 2008 May; 69(7):1496-506. PubMed ID: 18346767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine.
    Poppe L; Rétey J
    Angew Chem Int Ed Engl; 2005 Jun; 44(24):3668-88. PubMed ID: 15906398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.
    Attanayake G; Walter T; Walker KD
    Biochemistry; 2018 Jun; 57(25):3503-3514. PubMed ID: 29757631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigations into the stereochemistry and activity of a phenylalanine-2,3-aminomutase from Taxus chinensis.
    Wybenga GG; Szymanski W; Wu B; Feringa BL; Janssen DB; Dijkstra BW
    Biochemistry; 2014 May; 53(19):3187-98. PubMed ID: 24786474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles.
    Weiser D; Bencze LC; Bánóczi G; Ender F; Kiss R; Kókai E; Szilágyi A; Vértessy BG; Farkas Ö; Paizs C; Poppe L
    Chembiochem; 2015 Nov; 16(16):2283-8. PubMed ID: 26345352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.