These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28919932)

  • 21. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols.
    Matosevic S; Lye GJ; Baganz F
    J Biotechnol; 2011 Sep; 155(3):320-9. PubMed ID: 21807042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The unique functional role of the C-HS hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase.
    Reddi R; Singarapu KK; Pal D; Addlagatta A
    Mol Biosyst; 2016 Jul; 12(8):2408-16. PubMed ID: 27225936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase.
    Bearne SL; St Maurice M
    Adv Protein Chem Struct Biol; 2017; 109():113-160. PubMed ID: 28683916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for determination of transketolase activity based on the use of a pH indicator.
    Hübner G; Golbik R; Meshalkina LE
    Biochem Int; 1992 Mar; 26(3):545-50. PubMed ID: 1627164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes.
    Klyosov AA
    Biochemistry; 1996 Apr; 35(14):4457-67. PubMed ID: 8605195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. His103 in yeast transketolase is required for substrate recognition and catalysis.
    Wikner C; Meshalkina L; Nilsson U; Bäckström S; Lindqvist Y; Schneider G
    Eur J Biochem; 1995 Nov; 233(3):750-5. PubMed ID: 8521838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase.
    Naula C; Alibu VP; Brock JM; Veitch NJ; Burchmore RJ; Barrett MP
    J Biochem Biophys Methods; 2008 Apr; 70(6):1185-7. PubMed ID: 18053578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Donor substrate regulation of transketolase.
    Esakova OA; Meshalkina LE; Golbik R; Hübner G; Kochetov GA
    Eur J Biochem; 2004 Nov; 271(21):4189-94. PubMed ID: 15511224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties and functions of the thiamin diphosphate dependent enzyme transketolase.
    Schenk G; Duggleby RG; Nixon PF
    Int J Biochem Cell Biol; 1998 Dec; 30(12):1297-318. PubMed ID: 9924800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Functional carboxylic group in the active center of transketolase].
    Kuimov AN; Meshalkina LE; Kochetov GA
    Biokhimiia; 1986 Nov; 51(11):1908-18. PubMed ID: 3542057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin.
    Hur S; Bruice TC
    J Am Chem Soc; 2002 Jun; 124(25):7303-13. PubMed ID: 12071739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational characterization of substrate binding and catalysis in S-adenosylhomocysteine hydrolase.
    Hu Y; Yang X; Yin DH; Mahadevan J; Kuczera K; Schowen RL; Borchardt RT
    Biochemistry; 2001 Dec; 40(50):15143-52. PubMed ID: 11735397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: pyruvate transaminase pathway in Escherichia coli.
    Ingram CU; Bommer M; Smith ME; Dalby PA; Ward JM; Hailes HC; Lye GJ
    Biotechnol Bioeng; 2007 Feb; 96(3):559-69. PubMed ID: 16902948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 'Split-Gene' Transketolase From the Hyper-Thermophilic Bacterium
    James P; Isupov MN; De Rose SA; Sayer C; Cole IS; Littlechild JA
    Front Microbiol; 2020; 11():592353. PubMed ID: 33193259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directed evolution of transketolase activity on non-phosphorylated substrates.
    Hibbert EG; Senussi T; Costelloe SJ; Lei W; Smith ME; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2007 Sep; 131(4):425-32. PubMed ID: 17825449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Second-Generation Engineering of a Thermostable Transketolase (TK
    Zhou C; Saravanan T; Lorillière M; Wei D; Charmantray F; Hecquet L; Fessner WD; Yi D
    Chembiochem; 2017 Mar; 18(5):455-459. PubMed ID: 28005308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Formation of a pentose phosphate cycle metabolite, erythrose-4-phosphate, from initial compounds of glycolysis by transketolase from the rat liver].
    Stepanova NG; Demcheva MV
    Biokhimiia; 1987 Nov; 52(11):1907-13. PubMed ID: 3440115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Purification and properties of rat liver transketolase].
    Gorbach ZV; Maglysh SS; Kubyshin VL; Ostrovskiĭ IuM
    Biokhimiia; 1981 Nov; 46(11):1963-9. PubMed ID: 7317524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The presence of a hydroxyl group at the C-1 atom of the transketolase substrate molecule is necessary for the enzyme to perform the transferase reaction.
    Meshalkina LE; Neef H; Tjaglo MV; Schellenberger A; Kochetov GA
    FEBS Lett; 1995 Nov; 375(3):220-2. PubMed ID: 7498503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.