These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28920369)

  • 41. [Level investigation on coptidis rhizoma processing methods and product specifications].
    Huang H; Liu X; Huang LQ; Yang YF; Wu HZ
    Zhongguo Zhong Yao Za Zhi; 2014 Aug; 39(16):3085-8. PubMed ID: 25509292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Regionalization study of Dioscorea nipponica in Jilin province based on MaxEnt and ArcGIS].
    Wang Z; Li B; Xiao JL; Jiang DC
    Zhongguo Zhong Yao Za Zhi; 2017 Nov; 42(22):4373-4377. PubMed ID: 29318838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production.
    Fujii A; Okuyama T; Wakame K; Okumura T; Ikeya Y; Nishizawa M
    J Nat Med; 2017 Oct; 71(4):745-756. PubMed ID: 28681120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coptidis alkaloids extracted from Coptis chinensis Franch attenuate IFN-γ-induced destruction of bone marrow cells.
    Li J; Meng X; Wang C; Zhang H; Chen H; Deng P; Liu J; Huandike M; Wei J; Chai L
    PLoS One; 2020; 15(7):e0236433. PubMed ID: 32706801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.
    Friedemann T; Otto B; Klätschke K; Schumacher U; Tao Y; Leung AK; Efferth T; Schröder S
    J Ethnopharmacol; 2014 Aug; 155(1):607-15. PubMed ID: 24929105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AChE inhibitory alkaloids from Coptis chinensis.
    Lin Y; Guo HC; Kuang Y; Shang ZP; Li B; Chen K; Xu LL; Qiao X; Liang H; Ye M
    Fitoterapia; 2020 Mar; 141():104464. PubMed ID: 31870946
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Study on optimal processing technology of three kinds of processed coptidis rhizoma].
    Wang DZ; Yi J; Zhang Y; Gao Q; Wang YZ; Li XG
    Zhong Yao Cai; 2013 Jan; 36(1):35-7. PubMed ID: 23750405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Predictive distribution and planting GAP of Cyathula officinalis in China based on 3S technology and MaxEnt modelling].
    Wu MY; He L; Chen JL; Dong G; Cheng WX
    Zhongguo Zhong Yao Za Zhi; 2017 Nov; 42(22):4395-4401. PubMed ID: 29318841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of Helicobacter pylori Urease Inhibition by Rhizoma Coptidis, Cortex Phellodendri and Berberine: Mechanisms of Interaction with the Sulfhydryl Group.
    Li C; Xie J; Chen X; Mo Z; Wu W; Liang Y; Su Z; Li Q; Li Y; Su Z; Yang X
    Planta Med; 2016 Mar; 82(4):305-11. PubMed ID: 26669678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Quality evaluation and growing regionalization of Pseudostellaria heterophylla in Guizhou].
    Kang CZ; Zhou T; Jiang WK; Guo LP; Zhang XB; Xiao CH; Zhao D
    Zhongguo Zhong Yao Za Zhi; 2016 Jul; 41(13):2391-2396. PubMed ID: 28905558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study on the net photosynthesis rate of Coptis chinensis from different types and production places].
    Qu XY; Sun NX; Li LY; Zhong GY; Yin FJ
    Zhong Yao Cai; 2011 Mar; 34(3):336-9. PubMed ID: 21823447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Analysis and assessment of Coptis chinensis for different parts, ages, and heights using Fourier transform infrared spectroscopy].
    Li YM; Wang LQ; Deng F; Zhou Q; Sun SQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2004 Dec; 26(6):614-7. PubMed ID: 15663218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coptis chinensis Franch. extract up-regulate type I helper T-cell cytokine through MAPK activation in MOLT-4 T cell.
    Kim E; Ahn S; Rhee HI; Lee DC
    J Ethnopharmacol; 2016 Aug; 189():126-31. PubMed ID: 27224239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of RHIZOMA COPTIDIS and COPTIS CHINENSIS aqueous extract on radiation-induced skin injury in a rat model.
    Wang XJ; Lin S; Kang HF; Dai ZJ; Bai MH; Ma XL; Ma XB; Liu MJ; Liu XX; Wang BF
    BMC Complement Altern Med; 2013 May; 13():105. PubMed ID: 23675786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Production regionalization study of Isatidis Radix].
    Zhao WL; Jin L; Wang HZ; Cui ZJ; Hou J; Lu YY; Du T
    Zhongguo Zhong Yao Za Zhi; 2017 Nov; 42(22):4414-4418. PubMed ID: 29318844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].
    Chen YN; Yuan L
    Huan Jing Ke Xue; 2015 May; 36(5):1655-61. PubMed ID: 26314112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Discrimination of Coptidis Rhizoma and its processed products by odor objectify].
    Xu M; Yang SL; Zhang C; Wan J; Wu N; Li XY; Huang QW; Zhou X; Wu CJ
    Zhongguo Zhong Yao Za Zhi; 2015 Jan; 40(1):89-93. PubMed ID: 25993794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptome and Metabolome Analysis of Isoquinoline Alkaloid Biosynthesis of
    Min X; Zhu T; Hu X; Hou C; He J; Liu X
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137054
    [No Abstract]   [Full Text] [Related]  

  • 59. A rapid and simple determination of protoberberine alkaloids in Rhizoma Coptidis by 1H NMR and its application for quality control of commercial prescriptions.
    Li CY; Tsai SI; Damu AG; Wu TS
    J Pharm Biomed Anal; 2009 Jul; 49(5):1272-6. PubMed ID: 19345543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Potential Ecological Suitability Regionalization Analysis of Angelica sinensis Based on GIS and Fuzzy Matter Element Model].
    Shang ZH; Wei HY; Gu W; Mao YJ; Zhu LN; Sang MJ
    Zhong Yao Cai; 2015 Jul; 38(7):1370-4. PubMed ID: 26946832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.