BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28920391)

  • 21. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene.
    Araya-Garay JM; Feijoo-Siota L; Rosa-dos-Santos F; Veiga-Crespo P; Villa TG
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2483-92. PubMed ID: 22159890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli.
    Wu T; Ye L; Zhao D; Li S; Li Q; Zhang B; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):85-91. PubMed ID: 28688931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.
    Xie W; Liu M; Lv X; Lu W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Jan; 111(1):125-33. PubMed ID: 23860829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redirecting Metabolic Flux towards the Mevalonate Pathway for Enhanced
    Naz T; Nazir Y; Nosheen S; Ullah S; Halim H; Fazili ABA; Li S; Mustafa K; Mohamed H; Yang W; Song Y
    Biomed Res Int; 2020; 2020():8890269. PubMed ID: 33457420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy.
    Olson ML; Johnson J; Carswell WF; Reyes LH; Senger RS; Kao KC
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1355-63. PubMed ID: 27423881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biosynthesis and accumulation of beta-carotene in Dunaliella salina proceed via the glyceraldehyde 3-phosphate/pyruvate pathway.
    Capa-Robles W; Paniagua-Michel J; Soto JO
    Nat Prod Res; 2009; 23(11):1021-8. PubMed ID: 19521917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rice callus as a high-throughput platform for synthetic biology and metabolic engineering of carotenoids.
    Zhu C; Bai C; Gomez-Gomez L; Sandmann G; Baysal C; Capell T; Christou P
    Methods Enzymol; 2022; 671():511-526. PubMed ID: 35878992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes.
    Maj A; Dziewit L; Drewniak L; Garstka M; Krucon T; Piatkowska K; Gieczewska K; Czarnecki J; Furmanczyk E; Lasek R; Baj J; Bartosik D
    Microb Cell Fact; 2020 Jul; 19(1):141. PubMed ID: 32660485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthetic Pathway of Carotenoids in
    Tang W; Wang Y; Zhang J; Cai Y; He Z
    J Microbiol Biotechnol; 2019 Apr; 29(4):507-517. PubMed ID: 30856706
    [No Abstract]   [Full Text] [Related]  

  • 30. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli.
    Wu T; Li S; Ye L; Zhao D; Fan F; Li Q; Zhang B; Bi C; Zhang X
    ACS Synth Biol; 2019 May; 8(5):1037-1046. PubMed ID: 30990999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering the halophilic bacterium Halomonas elongata to produce beta-carotene.
    Rodríguez-Sáiz M; Sánchez-Porro C; De La Fuente JL; Mellado E; Barredo JL
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):637-43. PubMed ID: 17899066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity.
    Bai C; Berman J; Farre G; Capell T; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin.
    Jing Y; Wang Y; Zhou D; Wang J; Li J; Sun J; Feng Y; Xin F; Zhang W
    Biotechnol Adv; 2022 Dec; 61():108033. PubMed ID: 36096404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.
    Han M; He Q; Zhang WG
    Prep Biochem Biotechnol; 2012; 42(4):293-303. PubMed ID: 22708808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Over-production of beta-carotene from metabolically engineered Escherichia coli.
    Kim SW; Kim JB; Jung WH; Kim JH; Jung JK
    Biotechnol Lett; 2006 Jun; 28(12):897-904. PubMed ID: 16786275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of a beta-carotene over-producing soil bacterium, Sphingomonas sp.
    Silva C; Cabral JM; van Keulen F
    Biotechnol Lett; 2004 Feb; 26(3):257-62. PubMed ID: 15049373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutants and intersexual heterokaryons of Blakeslea trispora for production of beta-carotene and lycopene.
    Mehta BJ; Obraztsova IN; Cerdá-Olmedo E
    Appl Environ Microbiol; 2003 Jul; 69(7):4043-8. PubMed ID: 12839780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carotenoid deprivation and beta-carotene's effects on male and female turtle color.
    Steffen JE; Quigley R; Whibley I; McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 253():110546. PubMed ID: 33346113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.
    Wilson SA; Roberts SC
    Curr Opin Biotechnol; 2014 Apr; 26():174-82. PubMed ID: 24556196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase.
    Diretto G; Tavazza R; Welsch R; Pizzichini D; Mourgues F; Papacchioli V; Beyer P; Giuliano G
    BMC Plant Biol; 2006 Jun; 6():13. PubMed ID: 16800876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.