These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28920393)

  • 1. [Survival elongation of Pseudomonas aeruginosa improves power output of microbial fuel cells].
    You T; Liu J; Liang R; Liu J
    Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):601-608. PubMed ID: 28920393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation.
    Pham TH; Boon N; De Maeyer K; Höfte M; Rabaey K; Verstraete W
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):985-93. PubMed ID: 18688612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells.
    Yong XY; Shi DY; Chen YL; Feng J; Xu L; Zhou J; Wang SY; Yong YC; Sun YM; OuYang PK; Zheng T
    Bioresour Technol; 2014; 152():220-4. PubMed ID: 24292201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells.
    Shen HB; Yong XY; Chen YL; Liao ZH; Si RW; Zhou J; Wang SY; Yong YC; OuYang PK; Zheng T
    Bioresour Technol; 2014 Sep; 167():490-4. PubMed ID: 25011080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells.
    Zhang T; Zhang L; Su W; Gao P; Li D; He X; Zhang Y
    Bioresour Technol; 2011 Jul; 102(14):7099-102. PubMed ID: 21596560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrobiochemical skills of Pseudomonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxidation in a microbial fuel cell.
    Zani ACB; Almeida ÉJR; Furlan JPR; Pedrino M; Guazzaroni ME; Stehling EG; Andrade AR; Reginatto V
    Chemosphere; 2023 Sep; 335():139073. PubMed ID: 37263512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell.
    Yong XY; Feng J; Chen YL; Shi DY; Xu YS; Zhou J; Wang SY; Xu L; Yong YC; Sun YM; Shi CL; OuYang PK; Zheng T
    Biosens Bioelectron; 2014 Jun; 56():19-25. PubMed ID: 24445069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells.
    Yong YC; Yu YY; Li CM; Zhong JJ; Song H
    Biosens Bioelectron; 2011 Dec; 30(1):87-92. PubMed ID: 21945141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells.
    Tahernia M; Mohammadifar M; Gao Y; Panmanee W; Hassett DJ; Choi S
    Biosens Bioelectron; 2020 Aug; 162():112259. PubMed ID: 32452395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs.
    Luo J; Li X; Zhang J; Feng A; Xia M; Zhou M
    Biosens Bioelectron; 2020 Sep; 163():112269. PubMed ID: 32568691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer.
    Pham TH; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Vanhaecke L; De Maeyer K; Höfte M; Verstraete W; Rabaey K
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1119-29. PubMed ID: 17968538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells.
    Jayapriya J; Ramamurthy V
    Bioresour Technol; 2012 Nov; 124():23-8. PubMed ID: 22985848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
    Wang VB; Chua SL; Cao B; Seviour T; Nesatyy VJ; Marsili E; Kjelleberg S; Givskov M; Tolker-Nielsen T; Song H; Loo JS; Yang L
    PLoS One; 2013; 8(5):e63129. PubMed ID: 23700414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs.
    Luo J; Wang T; Li X; Yang Y; Zhou M; Li M; Yan Z
    Biosens Bioelectron; 2018 Oct; 117():23-31. PubMed ID: 29879584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale.
    Nath D; Ghangrekar MM
    Sci Rep; 2020 Oct; 10(1):17185. PubMed ID: 33057031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.