These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28920393)
21. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263 [TBL] [Abstract][Full Text] [Related]
22. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032 [TBL] [Abstract][Full Text] [Related]
23. The effect of flavin electron shuttles in microbial fuel cells current production. Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021 [TBL] [Abstract][Full Text] [Related]
24. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
27. Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Liu ZD; Du ZW; Lian J; Zhu XY; Li SH; Li HR Lett Appl Microbiol; 2007 Apr; 44(4):393-8. PubMed ID: 17397477 [TBL] [Abstract][Full Text] [Related]
28. Complete genome sequence of Pseudomonas stutzeri S116 owning bifunctional catalysis provides insights into affecting performance of microbial fuel cells. Li P; Yuan W; Huang Y; Zhang C; Ni C; Lin Q; Zhu Z; Wang J BMC Microbiol; 2022 May; 22(1):137. PubMed ID: 35590268 [TBL] [Abstract][Full Text] [Related]
29. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil. Xu J; Liu H; Liu J; Liang R Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):755-63. PubMed ID: 26563001 [TBL] [Abstract][Full Text] [Related]
30. Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells. Shreeram DD; Panmanee W; McDaniel CT; Daniel S; Schaefer DW; Hassett DJ J Ind Microbiol Biotechnol; 2018 Feb; 45(2):103-109. PubMed ID: 29288437 [TBL] [Abstract][Full Text] [Related]
31. Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization. Xu Q; Sun J; Hu YY; Chen J; Li WJ Bioresour Technol; 2013 Aug; 142():101-8. PubMed ID: 23735792 [TBL] [Abstract][Full Text] [Related]
32. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Saratale GD; Saratale RG; Shahid MK; Zhen G; Kumar G; Shin HS; Choi YG; Kim SH Chemosphere; 2017 Jul; 178():534-547. PubMed ID: 28351012 [TBL] [Abstract][Full Text] [Related]
33. Carbamazepine degradation and genome sequencing of a novel exoelectrogen isolated from microbial fuel cells. Zhou Z; Wu Y; Xu Y; Wang Z; Fu H; Zheng Y Sci Total Environ; 2022 Sep; 838(Pt 2):156161. PubMed ID: 35609705 [TBL] [Abstract][Full Text] [Related]
34. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Yong YC; Yu YY; Yang Y; Liu J; Wang JY; Song H Biotechnol Bioeng; 2013 Feb; 110(2):408-16. PubMed ID: 23007598 [TBL] [Abstract][Full Text] [Related]
36. A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. de Los Ángeles Fernandez M; de Los Ángeles Sanromán M; Marks S; Makinia J; Gonzalez Del Campo A; Rodrigo M; Fernandez FJ Bioresour Technol; 2016 Jan; 200():396-404. PubMed ID: 26512864 [TBL] [Abstract][Full Text] [Related]
37. Linking microbial mechanism with bioelectricity production in sludge matrix-fed microbial fuel cells: Freezing/thawing liquid versus fermentation liquor. Xin X; Qiu W Sci Total Environ; 2021 Jan; 752():141907. PubMed ID: 32890820 [TBL] [Abstract][Full Text] [Related]
38. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications]. Deng H; Xue HJ; Jiang YB; Zhong WH Huan Jing Ke Xue; 2015 Oct; 36(10):3926-34. PubMed ID: 26841633 [TBL] [Abstract][Full Text] [Related]
39. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Yang F; Ren L; Pu Y; Logan BE Bioresour Technol; 2013 Jan; 128():784-7. PubMed ID: 23186679 [TBL] [Abstract][Full Text] [Related]
40. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Nam JY; Kim HW; Lim KH; Shin HS Bioresour Technol; 2010 Jan; 101 Suppl 1():S33-7. PubMed ID: 19394820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]