These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28920422)
1. Dual-Activator Codoped Upconversion Nanoprobe with Core-Multishell Structure for in Vitro and in Vivo Detection of Hydroxyl Radical. Song X; Zhang J; Yue Z; Wang Z; Liu Z; Zhang S Anal Chem; 2017 Oct; 89(20):11021-11026. PubMed ID: 28920422 [TBL] [Abstract][Full Text] [Related]
2. A Rationally Designed Upconversion Nanoprobe for in Vivo Detection of Hydroxyl Radical. Li Z; Liang T; Lv S; Zhuang Q; Liu Z J Am Chem Soc; 2015 Sep; 137(34):11179-85. PubMed ID: 26287332 [TBL] [Abstract][Full Text] [Related]
3. Intense Red-Emitting Upconversion Nanophosphors (800 nm-Driven) with a Core/Double-Shell Structure for Dual-Modal Upconversion Luminescence and Magnetic Resonance in Vivo Imaging Applications. Hong AR; Kim Y; Lee TS; Kim S; Lee K; Kim G; Jang HS ACS Appl Mater Interfaces; 2018 Apr; 10(15):12331-12340. PubMed ID: 29546978 [TBL] [Abstract][Full Text] [Related]
4. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. Li Z; Lv S; Wang Y; Chen S; Liu Z J Am Chem Soc; 2015 Mar; 137(9):3421-7. PubMed ID: 25707940 [TBL] [Abstract][Full Text] [Related]
5. Huge enhancement of upconversion luminescence by dye/Nd Zhao F; Yin D; Wu C; Liu B; Chen T; Guo M; Huang K; Chen Z; Zhang Y Dalton Trans; 2017 Nov; 46(46):16180-16189. PubMed ID: 29182691 [TBL] [Abstract][Full Text] [Related]
6. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells. Yang L; Zhang K; Bi S; Zhu JJ ACS Appl Mater Interfaces; 2019 Oct; 11(42):38459-38466. PubMed ID: 31593426 [TBL] [Abstract][Full Text] [Related]
7. Combating Concentration Quenching in Upconversion Nanoparticles. Chen B; Wang F Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900 [TBL] [Abstract][Full Text] [Related]
8. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging. Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512 [TBL] [Abstract][Full Text] [Related]
9. A protected excitation-energy reservoir for efficient upconversion luminescence. Huang K; Liu H; Kraft M; Shikha S; Zheng X; Ågren H; Würth C; Resch-Genger U; Zhang Y Nanoscale; 2017 Dec; 10(1):250-259. PubMed ID: 29210408 [TBL] [Abstract][Full Text] [Related]
10. Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors. Liu L; Hua R; Chen B; Qi X; Zhang W; Zhang X; Liu Z; Ding T; Yang S; Zhang T; Cheng L Nanotechnology; 2019 Sep; 30(37):375703. PubMed ID: 31163404 [TBL] [Abstract][Full Text] [Related]
11. Activators Confined Upconversion Nanoprobe with Near-Unity Förster Resonance Energy Transfer Efficiency for Ultrasensitive Detection. Chen T; Shang Y; Zhu Y; Hao S; Yang C ACS Appl Mater Interfaces; 2022 May; 14(17):19826-19835. PubMed ID: 35438973 [TBL] [Abstract][Full Text] [Related]
12. A FRET-based upconversion nanoprobe assembled with an electrochromic chromophore for sensitive detection of hydrogen sulfide Cui M; Li H; Ren X; Xia L; Deng D; Gu Y; Li D; Wang P Nanoscale; 2020 Aug; 12(33):17517-17529. PubMed ID: 32812601 [TBL] [Abstract][Full Text] [Related]
13. Energy Flux Manipulation in Upconversion Nanosystems. Liang L; Qin X; Zheng K; Liu X Acc Chem Res; 2019 Jan; 52(1):228-236. PubMed ID: 30557000 [TBL] [Abstract][Full Text] [Related]
14. Upconversion core/shell nanoparticles with lowered surface quenching for fluorescence detection of Hg Shi L; Hu J; Wu X; Zhan S; Hu S; Tang Z; Chen M; Liu Y Dalton Trans; 2018 Nov; 47(46):16445-16452. PubMed ID: 30352108 [TBL] [Abstract][Full Text] [Related]
15. Breaking Through the Signal-to-Background Limit of Upconversion Nanoprobes Using a Target-Modulated Sensitizing Switch. Liang T; Li Z; Wang P; Zhao F; Liu J; Liu Z J Am Chem Soc; 2018 Nov; 140(44):14696-14703. PubMed ID: 30362727 [TBL] [Abstract][Full Text] [Related]
16. A dye-quenched/sensitized switching upconversion nanoprobe for high-contrast mapping of the pH-related tumor microenvironment. He L; Li Y; Zeng Q; Li X; Liang H; Zhang T Nanoscale; 2023 Oct; 15(41):16727-16733. PubMed ID: 37811862 [TBL] [Abstract][Full Text] [Related]
17. Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein. Chen J; Ho WKH; Yin B; Zhang Q; Li C; Yan J; Huang Y; Hao J; Yi C; Zhang Y; Wong SHD; Yang M Biosens Bioelectron; 2024 Mar; 248():115969. PubMed ID: 38154329 [TBL] [Abstract][Full Text] [Related]
18. FRET-Based Upconversion Nanoprobe Sensitized by Nd Wang H; Li Y; Yang M; Wang P; Gu Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7441-7449. PubMed ID: 30673225 [TBL] [Abstract][Full Text] [Related]
19. Enhanced upconversion luminescence intensity of core-shell NaYF Kang N; Zhao J; Zhou Y; Ai C; Wang X; Ren L Nanotechnology; 2019 Mar; 30(10):105701. PubMed ID: 30593009 [TBL] [Abstract][Full Text] [Related]
20. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. Jiang D; Tan Q; Shen Y; Ye M; Li J; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122411. PubMed ID: 36731306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]