These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 28920507)
21. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Brochier C; Forterre P; Gribaldo S Genome Biol; 2004; 5(3):R17. PubMed ID: 15003120 [TBL] [Abstract][Full Text] [Related]
22. Protein folding and molecular chaperones in archaea. Leroux MR Adv Appl Microbiol; 2001; 50():219-77. PubMed ID: 11677685 [No Abstract] [Full Text] [Related]
23. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nelson-Sathi S; Sousa FL; Roettger M; Lozada-Chávez N; Thiergart T; Janssen A; Bryant D; Landan G; Schönheit P; Siebers B; McInerney JO; Martin WF Nature; 2015 Jan; 517(7532):77-80. PubMed ID: 25317564 [TBL] [Abstract][Full Text] [Related]
25. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history. Kandiba L; Eichler J FEMS Microbiol Lett; 2013 Aug; 345(2):110-20. PubMed ID: 23746269 [TBL] [Abstract][Full Text] [Related]
26. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. Mura C; Randolph PS; Patterson J; Cozen AE RNA Biol; 2013 Apr; 10(4):636-51. PubMed ID: 23579284 [TBL] [Abstract][Full Text] [Related]
27. Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Ruano-Rubio V; Fares MA Mol Biol Evol; 2007 Jun; 24(6):1384-96. PubMed ID: 17406022 [TBL] [Abstract][Full Text] [Related]
28. Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families. Petitjean C; Makarova KS; Wolf YI; Koonin EV Genome Biol Evol; 2017 Oct; 9(10):2791-2811. PubMed ID: 28985292 [TBL] [Abstract][Full Text] [Related]
29. Protein transport in Archaea: Sec and twin arginine translocation pathways. Pohlschröder M; Giménez MI; Jarrell KF Curr Opin Microbiol; 2005 Dec; 8(6):713-9. PubMed ID: 16257258 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide identification of SF1 and SF2 helicases from archaea. Chamieh H; Ibrahim H; Kozah J Gene; 2016 Jan; 576(1 Pt 2):214-28. PubMed ID: 26456193 [TBL] [Abstract][Full Text] [Related]
31. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Boucher Y; Kamekura M; Doolittle WF Mol Microbiol; 2004 Apr; 52(2):515-27. PubMed ID: 15066037 [TBL] [Abstract][Full Text] [Related]
32. Sweet New Roles for Protein Glycosylation in Prokaryotes. Eichler J; Koomey M Trends Microbiol; 2017 Aug; 25(8):662-672. PubMed ID: 28341406 [TBL] [Abstract][Full Text] [Related]
33. Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea. Kaminski L; Lurie-Weinberger MN; Allers T; Gophna U; Eichler J Mol Phylogenet Evol; 2013 Aug; 68(2):327-39. PubMed ID: 23567024 [TBL] [Abstract][Full Text] [Related]
34. Insights into archaeal chaperone machinery: a network-based approach. Rani S; Sharma A; Goel M Cell Stress Chaperones; 2018 Nov; 23(6):1257-1274. PubMed ID: 30178307 [TBL] [Abstract][Full Text] [Related]
35. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Bhandari V; Naushad HS; Gupta RS Front Cell Infect Microbiol; 2012; 2():98. PubMed ID: 22919687 [TBL] [Abstract][Full Text] [Related]
36. The archaeal exosome. Evguenieva-Hackenberg E Adv Exp Med Biol; 2010; 702():29-38. PubMed ID: 21618872 [TBL] [Abstract][Full Text] [Related]
37. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria. Brochier C; López-García P; Moreira D Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136 [TBL] [Abstract][Full Text] [Related]
38. RecA family proteins in archaea: RadA and its cousins. Haldenby S; White MF; Allers T Biochem Soc Trans; 2009 Feb; 37(Pt 1):102-7. PubMed ID: 19143611 [TBL] [Abstract][Full Text] [Related]
39. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea. Rivera-Gómez N; Martínez-Núñez MA; Pastor N; Rodriguez-Vazquez K; Perez-Rueda E Microbiology (Reading); 2017 Aug; 163(8):1167-1178. PubMed ID: 28777072 [TBL] [Abstract][Full Text] [Related]
40. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]