BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28920596)

  • 1. Optical and magnetic properties of antiaromatic porphyrinoids.
    Valiev RR; Fliegl H; Sundholm D
    Phys Chem Chem Phys; 2017 Oct; 19(38):25979-25988. PubMed ID: 28920596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-shell paramagnetic porphyrinoids.
    Valiev RR; Fliegl H; Sundholm D
    Chem Commun (Camb); 2017 Aug; 53(71):9866-9869. PubMed ID: 28825092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into magnetically induced current pathways and optical properties of isophlorins.
    Valiev RR; Fliegl H; Sundholm D
    J Phys Chem A; 2013 Sep; 117(37):9062-8. PubMed ID: 24004411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Studies of Aromatic and Photophysical Properties of Expanded Porphyrins.
    Valiev RR; Benkyi I; Konyshev YV; Fliegl H; Sundholm D
    J Phys Chem A; 2018 May; 122(20):4756-4767. PubMed ID: 29741898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.
    Sundholm D; Berger RJ; Fliegl H
    Phys Chem Chem Phys; 2016 Jun; 18(23):15934-42. PubMed ID: 27241465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetically induced current densities in aromatic, antiaromatic, homoaromatic, and nonaromatic hydrocarbons.
    Fliegl H; Sundholm D; Taubert S; Jusélius J; Klopper W
    J Phys Chem A; 2009 Jul; 113(30):8668-76. PubMed ID: 19586004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Shielding, Aromaticity, Antiaromaticity and Bonding in the Low-Lying Electronic States of S
    Karadakov PB; Al-Yassiri MAH; Cooper DL
    Chemistry; 2018 Nov; 24(63):16791-16803. PubMed ID: 30270473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aromatic character of thienopyrrole-modified 20π-electron porphyrinoids.
    Valiev RR; Fliegl H; Sundholm D
    Phys Chem Chem Phys; 2014 Jun; 16(22):11010-6. PubMed ID: 24776774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiaromatic character of 16 π electron octaethylporphyrins: magnetically induced ring currents from DFT-GIMIC calculations.
    Fliegl H; Pichierri F; Sundholm D
    J Phys Chem A; 2015 Mar; 119(11):2344-50. PubMed ID: 25141236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic and antiaromatic ring currents in a molecular nanoring.
    Peeks MD; Claridge TD; Anderson HL
    Nature; 2017 Jan; 541(7636):200-203. PubMed ID: 27992878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relations between the aromaticity and magnetic dipole transitions in the electronic spectra of hetero[8]circulenes.
    Valiev RR; Baryshnikov GV; Sundholm D
    Phys Chem Chem Phys; 2018 Dec; 20(48):30239-30246. PubMed ID: 30474088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of a paramagnetic planar dibenzotetraaza[14]annulene Ni(II) complex.
    Rabaâ H; Khaledi H; Olmstead MM; Sundholm D
    J Phys Chem A; 2015 May; 119(21):5189-96. PubMed ID: 25531241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Antiaromatic Subunits in [4n+2] π-Systems: Bispentalenes with [4n+2] π-Electron Perimeters and Antiaromatic Character.
    Cao J; London G; Dumele O; von Wantoch Rekowski M; Trapp N; Ruhlmann L; Boudon C; Stanger A; Diederich F
    J Am Chem Soc; 2015 Jun; 137(22):7178-88. PubMed ID: 25978774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the electronic structure of azolehemiporphyrazines: direct spectroscopic observation of magnetic dipole allowed nature of the lowest π-π* transition of 20π-electron porphyrinoids.
    Muranaka A; Ohira S; Toriumi N; Hirayama M; Kyotani F; Mori Y; Hashizume D; Uchiyama M
    J Phys Chem A; 2014 Jun; 118(25):4415-24. PubMed ID: 24866729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the degree of aromaticity of novel carbaporphyrinoids.
    Valiev RR; Fliegl H; Sundholm D
    Phys Chem Chem Phys; 2015 Jun; 17(21):14215-22. PubMed ID: 25958951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene.
    Karadakov PB
    J Phys Chem A; 2008 Dec; 112(49):12707-13. PubMed ID: 19007145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic Pathways in Porphycene Derivatives Based on Current-Density Calculations.
    Benkyi I; Sundholm D
    J Phys Chem A; 2019 Jan; 123(1):284-292. PubMed ID: 30561203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrinoids, a unique platform for exploring excited-state aromaticity.
    Kim J; Oh J; Osuka A; Kim D
    Chem Soc Rev; 2022 Jan; 51(1):268-292. PubMed ID: 34879124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Macrocycles to Quantum Rings: Does Aromaticity Have a Size Limit?
    Jirásek M; Anderson HL; Peeks MD
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34347441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aromatic nature of auracycles and diauracycles based on calculated ring-current strengths.
    Blasco D; Sundholm D
    Dalton Trans; 2024 Jun; 53(24):10150-10158. PubMed ID: 38819195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.