These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 28921247)
1. Muscle lactate concentration during experimental hemorrhagic shock. Yang M J Anesth; 1998 Jun; 12(2):76-80. PubMed ID: 28921247 [TBL] [Abstract][Full Text] [Related]
2. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study. Nelimarkka O Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913 [TBL] [Abstract][Full Text] [Related]
3. Renal oxygenation and lactate metabolism in hemorrhagic shock in dogs. Nelimarkka O Acta Chir Scand; 1983; 149(3):239-44. PubMed ID: 6613459 [TBL] [Abstract][Full Text] [Related]
4. Accurate and continuous measurement of oxygen deficit during haemorrhage in pigs. Roesner JP; Koch A; Bateman R; Scheeren TW; Zander R; Nöldge-Schomburg GE; Zacharowski K Resuscitation; 2009 Feb; 80(2):259-63. PubMed ID: 19058901 [TBL] [Abstract][Full Text] [Related]
5. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Monnet X; Julien F; Ait-Hamou N; Lequoy M; Gosset C; Jozwiak M; Persichini R; Anguel N; Richard C; Teboul JL Crit Care Med; 2013 Jun; 41(6):1412-20. PubMed ID: 23442986 [TBL] [Abstract][Full Text] [Related]
6. Tissue oxygen monitoring during hemorrhagic shock and resuscitation: a comparison of lactated Ringer's solution, hypertonic saline dextran, and HBOC-201. Knudson MM; Lee S; Erickson V; Morabito D; Derugin N; Manley GT J Trauma; 2003 Feb; 54(2):242-52. PubMed ID: 12579047 [TBL] [Abstract][Full Text] [Related]
7. Effects of low-volume hemoglobin glutamer-200 versus normal saline and arginine vasopressin resuscitation on systemic and skeletal muscle blood flow and oxygenation in a canine hemorrhagic shock model. Driessen B; Zarucco L; Gunther RA; Burns PM; Lamb SV; Vincent SE; Boston RA; Jahr JS; Cheung AT Crit Care Med; 2007 Sep; 35(9):2101-9. PubMed ID: 17581486 [TBL] [Abstract][Full Text] [Related]
8. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Levy B; Desebbe O; Montemont C; Gibot S Shock; 2008 Oct; 30(4):417-21. PubMed ID: 18323749 [TBL] [Abstract][Full Text] [Related]
9. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892 [TBL] [Abstract][Full Text] [Related]
10. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Mallat J; Pepy F; Lemyze M; Gasan G; Vangrunderbeeck N; Tronchon L; Vallet B; Thevenin D Eur J Anaesthesiol; 2014 Jul; 31(7):371-80. PubMed ID: 24625464 [TBL] [Abstract][Full Text] [Related]
11. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat. Pearce FJ; Connett RJ; Drucker WR Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240 [TBL] [Abstract][Full Text] [Related]
12. Base deficit as a sensitive indicator of compensated shock and tissue oxygen utilization. Davis JW; Shackford SR; Holbrook TL Surg Gynecol Obstet; 1991 Dec; 173(6):473-6. PubMed ID: 1948606 [TBL] [Abstract][Full Text] [Related]
13. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Levy B; Gibot S; Franck P; Cravoisy A; Bollaert PE Lancet; 2005 Mar 5-11; 365(9462):871-5. PubMed ID: 15752531 [TBL] [Abstract][Full Text] [Related]
14. [Is infection and septic shock caused by a global oxygen deficiency? An overview in 2 parts. 1: Infection and correlation between DO2 and VO2]. Ensinger H; Georgieff M Anasthesiol Intensivmed Notfallmed Schmerzther; 1996 Apr; 31(3):132-42. PubMed ID: 8672614 [TBL] [Abstract][Full Text] [Related]
15. The early effect of Voluven, a novel hydroxyethyl starch (130/0.4), on cerebral oxygen supply and consumption in resuscitation of rabbit with acute hemorrhagic shock. Chen S; Zhu X; Wang Q; Li W; Cheng D; Lei C; Xiong L J Trauma; 2009 Mar; 66(3):676-82. PubMed ID: 19276737 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the hemoglobin-based oxygen carrier HBOC-201 to other low-volume resuscitation fluids in a model of controlled hemorrhagic shock. Sampson JB; Davis MR; Mueller DL; Kashyap VS; Jenkins DH; Kerby JD J Trauma; 2003 Oct; 55(4):747-54. PubMed ID: 14566133 [TBL] [Abstract][Full Text] [Related]
17. Blood glucose and lactate levels during hemorrhagic shock reversion by hypertonic NaCl solution. Lopes LR; Curi R; Lopes OU Braz J Med Biol Res; 1994 May; 27(5):1255-67. PubMed ID: 8000348 [TBL] [Abstract][Full Text] [Related]
18. Refining resuscitation strategies using tissue oxygen and perfusion monitoring in critical organ beds. Wan JJ; Cohen MJ; Rosenthal G; Haitsma IK; Morabito DJ; Derugin N; Knudson MM; Manley GT J Trauma; 2009 Feb; 66(2):353-7. PubMed ID: 19204507 [TBL] [Abstract][Full Text] [Related]
19. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Regueira T; Djafarzadeh S; Brandt S; Gorrasi J; Borotto E; Porta F; Takala J; Bracht H; Shaw S; Lepper PM; Jakob SM Acta Anaesthesiol Scand; 2012 Aug; 56(7):846-59. PubMed ID: 22571590 [TBL] [Abstract][Full Text] [Related]
20. Phosphomonoesters predict early mortality in porcine hemorrhagic shock. Taylor JH; Beilman GJ; Conroy MJ; Mulier KE; Hammer BE J Trauma; 2004 Feb; 56(2):251-8. PubMed ID: 14960964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]