These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28921436)

  • 1. Strategies to Develop Therapeutic N- and O-Hyperglycosylated Proteins.
    Gugliotta A; Ceaglio N; Etcheverrigaray M; Kratje R; Oggero M
    Methods Mol Biol; 2018; 1674():163-181. PubMed ID: 28921436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylation and antiproliferative activity of hyperglycosylated IFN-α2 potentiate HEK293 cells as biofactories.
    Gugliotta A; Ceaglio N; Raud B; Forno G; Mauro L; Kratje R; Oggero M
    Eur J Pharm Biopharm; 2017 Mar; 112():119-131. PubMed ID: 27867113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetics Versus In Vitro Antiproliferative Potency to Design a Novel Hyperglycosylated hIFN-α2 Biobetter.
    Gugliotta A; Leopold MJ; Mufarrege E; Etcheverrigaray M; Kratje R; Ceaglio N; Oggero M
    Pharm Res; 2021 Jan; 38(1):37-50. PubMed ID: 33443683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoengineering of CHO Cells to Improve Product Quality.
    Wang Q; Yin B; Chung CY; Betenbaugh MJ
    Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ANITVNITV peptide fusion on the bioactivity and pharmacokinetics of human IFN-α2b and a hyper-N-glycosylated variant.
    Gugliotta A; Ceaglio N; Kratje R; Oggero M
    J Biotechnol; 2019 Sep; 303():46-52. PubMed ID: 31336133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation of therapeutic proteins in different production systems.
    Werner RG; Kopp K; Schlueter M
    Acta Paediatr; 2007 Apr; 96(455):17-22. PubMed ID: 17391433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies.
    Sha S; Agarabi C; Brorson K; Lee DY; Yoon S
    Trends Biotechnol; 2016 Oct; 34(10):835-846. PubMed ID: 27016033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase.
    Wang Y; Norgård M; Andersson G
    Arch Biochem Biophys; 2005 Mar; 435(1):147-56. PubMed ID: 15680916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells.
    Gawlitzek M; Estacio M; Fürch T; Kiss R
    Biotechnol Bioeng; 2009 Aug; 103(6):1164-75. PubMed ID: 19418565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified secreted alkaline phosphatase as an improved reporter protein for N-glycosylation analysis.
    Olczak M; Szulc B
    PLoS One; 2021; 16(5):e0251805. PubMed ID: 34032812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycoengineering in CHO Cells: Advances in Systems Biology.
    Tejwani V; Andersen MR; Nam JH; Sharfstein ST
    Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.
    Lackman JJ; Goth CK; Halim A; Vakhrushev SY; Clausen H; Petäjä-Repo UE
    Cell Signal; 2018 Jan; 42():184-193. PubMed ID: 29097258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic deglycosylation of glycoproteins.
    Kim MS; Leahy D
    Methods Enzymol; 2013; 533():259-63. PubMed ID: 24182931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.
    Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ
    Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel long-lasting interferon alpha derivatives designed by glycoengineering.
    Ceaglio N; Etcheverrigaray M; Kratje R; Oggero M
    Biochimie; 2008 Mar; 90(3):437-49. PubMed ID: 18039474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered CHO cells for production of diverse, homogeneous glycoproteins.
    Yang Z; Wang S; Halim A; Schulz MA; Frodin M; Rahman SH; Vester-Christensen MB; Behrens C; Kristensen C; Vakhrushev SY; Bennett EP; Wandall HH; Clausen H
    Nat Biotechnol; 2015 Aug; 33(8):842-4. PubMed ID: 26192319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
    Losfeld ME; Scibona E; Lin CW; Villiger TK; Gauss R; Morbidelli M; Aebi M
    FASEB J; 2017 Oct; 31(10):4623-4635. PubMed ID: 28679530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of in vitro stability and pharmacokinetics of hIFN-α by fusing the carboxyl-terminal peptide of hCG β-subunit.
    Ceaglio N; Gugliotta A; Tardivo MB; Cravero D; Etcheverrigaray M; Kratje R; Oggero M
    J Biotechnol; 2016 Mar; 221():13-24. PubMed ID: 26806490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in protein glycosylation in Hansenula polymorpha depending on cell culture stage.
    Kim SY; Sohn JH; Pyun YR; Choi ES
    J Microbiol Biotechnol; 2007 Dec; 17(12):1949-54. PubMed ID: 18167441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding.
    Wong NS; Wati L; Nissom PM; Feng HT; Lee MM; Yap MG
    Biotechnol Bioeng; 2010 Oct; 107(2):321-36. PubMed ID: 20506284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.