These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28921440)

  • 1. Microplate-Based Method for High-Throughput Screening (HTS) of Chromatographic Conditions Studies for Recombinant Protein Purification.
    Carvalho RJ; Cruz TA
    Methods Mol Biol; 2018; 1674():211-220. PubMed ID: 28921440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized parallel screens to identify chromatographic steps required for recombinant protein purification.
    Rege K; Heng M
    Nat Protoc; 2010 Mar; 5(3):408-17. PubMed ID: 20203660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput process development for recombinant protein purification.
    Rege K; Pepsin M; Falcon B; Steele L; Heng M
    Biotechnol Bioeng; 2006 Mar; 93(4):618-30. PubMed ID: 16369981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to high throughput batch chromatography enhances multivariate screening.
    Barker GA; Calzada J; Herzer S; Rieble S
    Biotechnol J; 2015 Sep; 10(9):1493-8. PubMed ID: 25914370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His
    Sarkar J; Kumar A
    Anal Bioanal Chem; 2017 Apr; 409(11):2951-2965. PubMed ID: 28283714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents.
    Toueille M; Uzel A; Depoisier JF; Gantier R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-packed filter plates: a good alternative for pre-packed filter plates for developing purification processes for therapeutic proteins.
    Li X; de Roo G; Burgers K; Ottens M; Eppink M
    Biotechnol J; 2012 Oct; 7(10):1269-76. PubMed ID: 22911664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput screening (HTS) immunochemical method for the analysis of stanozolol metabolites in cattle urine samples.
    Salvador JP; Sánchez-Baeza F; Marco MP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jan; 878(2):243-52. PubMed ID: 19736048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based high-throughput process development for chromatographic whey proteins separation.
    Nfor BK; Ripić J; van der Padt A; Jacobs M; Ottens M
    Biotechnol J; 2012 Oct; 7(10):1221-32. PubMed ID: 22887918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.
    Kittelmann J; Ottens M; Hubbuch J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():98-105. PubMed ID: 25765136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification.
    Singh N; Herzer S
    Adv Biochem Eng Biotechnol; 2018; 165():115-178. PubMed ID: 28795201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput screening for the development of a monoclonal antibody affinity precipitation step using ELP-z stimuli responsive biopolymers.
    Sheth RD; Madan B; Chen W; Cramer SM
    Biotechnol Bioeng; 2013 Oct; 110(10):2664-76. PubMed ID: 23616271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light extinction and scattering by agarose based resin beads and applications in high-throughput screening.
    Kittelmann J; Hämmerling F; Ebeler M; Hubbuch J
    J Chromatogr A; 2015 Jun; 1397():52-8. PubMed ID: 25900741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput process development of chromatography steps: advantages and limitations of different formats used.
    Łącki KM
    Biotechnol J; 2012 Oct; 7(10):1192-202. PubMed ID: 22745056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved process analytical technology for protein a chromatography using predictive principal component analysis tools.
    Hou Y; Jiang C; Shukla AA; Cramer SM
    Biotechnol Bioeng; 2011 Jan; 108(1):59-68. PubMed ID: 20672251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylcholine (PC)-bonded protein A affinity chromatographic medium for high-throughput purification with reduced non-specific protein adsorption.
    Maeno K; Hirayama A; Sakuma K; Miyazawa K
    J Chromatogr Sci; 2011 Feb; 49(2):148-53. PubMed ID: 21223641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening of chromatographic separations: I. Method development and column modeling.
    Coffman JL; Kramarczyk JF; Kelley BD
    Biotechnol Bioeng; 2008 Jul; 100(4):605-18. PubMed ID: 18496874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatographic techniques in the downstream processing of proteins in biotechnology.
    Freitag R
    Methods Mol Biol; 2014; 1104():419-58. PubMed ID: 24297429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic high-throughput purification of affinity-tagged recombinant proteins.
    Wiesler SC; Weinzierl RO
    Methods Mol Biol; 2015; 1286():97-106. PubMed ID: 25749949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed Mode Chromatography, Complex Development for Large Opportunities.
    Cabanne C; Santarelli X
    Curr Protein Pept Sci; 2019; 20(1):22-27. PubMed ID: 29086691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.