These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 28921686)

  • 1. The effects of dynamical synapses on firing rate activity: a spiking neural network model.
    Khalil R; Moftah MZ; Moustafa AA
    Eur J Neurosci; 2017 Nov; 46(9):2445-2470. PubMed ID: 28921686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Communications Between GABA
    Khalil R; Karim AA; Khedr E; Moftah M; Moustafa AA
    Front Cell Neurosci; 2018; 12():468. PubMed ID: 30618625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity.
    Wei W; Wang XJ
    Neural Comput; 2016 Apr; 28(4):652-66. PubMed ID: 26890350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit.
    Lu HW; Trussell LO
    J Neurosci; 2016 Mar; 36(11):3268-80. PubMed ID: 26985036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition.
    Goldwyn JH; Slabe BR; Travers JB; Terman D
    PLoS Comput Biol; 2018 Jul; 14(7):e1006292. PubMed ID: 29985917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons.
    Wang XJ
    Neuroscience; 1999 Mar; 89(2):347-62. PubMed ID: 10077318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of synaptic facilitation in spike coincidence detection.
    Mejías JF; Torres JJ
    J Comput Neurosci; 2008 Apr; 24(2):222-34. PubMed ID: 17674172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.
    Fung CC; Wong KY; Wang H; Wu S
    Neural Comput; 2012 May; 24(5):1147-85. PubMed ID: 22295986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-Term Synaptic Plasticity as a Mechanism for Sensory Timing.
    Motanis H; Seay MJ; Buonomano DV
    Trends Neurosci; 2018 Oct; 41(10):701-711. PubMed ID: 30274605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-tuning of neural circuits through short-term synaptic plasticity.
    Sussillo D; Toyoizumi T; Maass W
    J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-existent activity patterns in inhibitory neuronal networks with short-term synaptic depression.
    Bose A; Booth V
    J Theor Biol; 2011 Mar; 272(1):42-54. PubMed ID: 21145899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spiking neural model for stable reinforcement of synapses based on multiple distal rewards.
    O'Brien MJ; Srinivasa N
    Neural Comput; 2013 Jan; 25(1):123-56. PubMed ID: 23020112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictable Fluctuations in Excitatory Synaptic Strength Due to Natural Variation in Presynaptic Firing Rate.
    Ren N; Wei G; Ghanbari A; Stevenson IH
    J Neurosci; 2022 Nov; 42(46):8608-8620. PubMed ID: 36171085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.