These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28921695)

  • 1. Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp.
    Szűcs A; Rátkai A; Schlett K; Huerta R
    Eur J Neurosci; 2017 Nov; 46(9):2429-2444. PubMed ID: 28921695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conventional measures of intrinsic excitability are poor estimators of neuronal activity under realistic synaptic inputs.
    Szabó A; Schlett K; Szücs A
    PLoS Comput Biol; 2021 Sep; 17(9):e1009378. PubMed ID: 34529674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of static and dynamic inputs on neuronal excitability.
    Szücs A; Huerta R
    J Neurophysiol; 2015 Jan; 113(1):232-43. PubMed ID: 25274346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):698-714. PubMed ID: 8871192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements.
    Jaffe DB; Ross WN; Lisman JE; Lasser-Ross N; Miyakawa H; Johnston D
    J Neurophysiol; 1994 Mar; 71(3):1065-77. PubMed ID: 8201402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network.
    Howard AL; Neu A; Morgan RJ; Echegoyen JC; Soltesz I
    J Neurophysiol; 2007 Mar; 97(3):2394-409. PubMed ID: 16943315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY; Chung HJ
    Neuroscience; 2014 Sep; 277():610-23. PubMed ID: 25086314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical properties of the silent and activated rat sympathetic neuron following denervation.
    Sacchi O; Rossi ML; Canella R; Fesce R
    Neuroscience; 2005; 135(1):31-45. PubMed ID: 16084656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):1994-2006. PubMed ID: 9114250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents.
    Rotstein HG
    J Comput Neurosci; 2015 Apr; 38(2):325-54. PubMed ID: 25586875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation.
    Warman EN; Durand DM; Yuen GL
    J Neurophysiol; 1994 Jun; 71(6):2033-45. PubMed ID: 7523610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular integrator neurons have quadratic functions due to voltage dependent conductances.
    Magnani C; Eugène D; Idoux E; Moore LE
    J Comput Neurosci; 2013 Dec; 35(3):243-59. PubMed ID: 23519443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditioning by subthreshold synaptic input changes the intrinsic firing pattern of CA3 hippocampal neurons.
    Soldado-Magraner S; Brandalise F; Honnuraiah S; Pfeiffer M; Moulinier M; Gerber U; Douglas R
    J Neurophysiol; 2020 Jan; 123(1):90-106. PubMed ID: 31721636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp.
    Saint Mleux B; Moore LE
    J Neurophysiol; 2000 Mar; 83(3):1381-93. PubMed ID: 10712465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.
    Spruston N; Jaffe DB; Williams SH; Johnston D
    J Neurophysiol; 1993 Aug; 70(2):781-802. PubMed ID: 8410172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.