BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28921956)

  • 1. Recognition of DNA Supercoil Geometry by Mycobacterium tuberculosis Gyrase.
    Ashley RE; Blower TR; Berger JM; Osheroff N
    Biochemistry; 2017 Oct; 56(40):5440-5448. PubMed ID: 28921956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
    Ashley RE; Dittmore A; McPherson SA; Turnbough CL; Neuman KC; Osheroff N
    Nucleic Acids Res; 2017 Sep; 45(16):9611-9624. PubMed ID: 28934496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I.
    Gentry AC; Juul S; Veigaard C; Knudsen BR; Osheroff N
    Nucleic Acids Res; 2011 Feb; 39(3):1014-22. PubMed ID: 20855291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gyrase containing a single C-terminal domain catalyzes negative supercoiling of DNA by decreasing the linking number in steps of two.
    Stelljes JT; Weidlich D; Gubaev A; Klostermeier D
    Nucleic Acids Res; 2018 Jul; 46(13):6773-6784. PubMed ID: 29893908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction.
    Gubaev A; Hilbert M; Klostermeier D
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13278-83. PubMed ID: 19666507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain.
    McClendon AK; Gentry AC; Dickey JS; Brinch M; Bendsen S; Andersen AH; Osheroff N
    Biochemistry; 2008 Dec; 47(50):13169-78. PubMed ID: 19053267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases.
    Jian JY; McCarty KD; Byl JAW; Guengerich FP; Neuman KC; Osheroff N
    Nucleic Acids Res; 2023 May; 51(8):3888-3902. PubMed ID: 36999602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs.
    McClendon AK; Osheroff N
    Biochemistry; 2006 Mar; 45(9):3040-50. PubMed ID: 16503659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Ca²⁺ in the activity of Mycobacterium tuberculosis DNA gyrase.
    Karkare S; Yousafzai F; Mitchenall LA; Maxwell A
    Nucleic Acids Res; 2012 Oct; 40(19):9774-87. PubMed ID: 22844097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes.
    McClendon AK; Dickey JS; Osheroff N
    Biochemistry; 2006 Sep; 45(38):11674-80. PubMed ID: 16981727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis.
    Aubry A; Fisher LM; Jarlier V; Cambau E
    Biochem Biophys Res Commun; 2006 Sep; 348(1):158-65. PubMed ID: 16876125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes.
    Bouige A; Darmon A; Piton J; Roue M; Petrella S; Capton E; Forterre P; Aubry A; Mayer C
    Biochem J; 2013 Nov; 455(3):285-94. PubMed ID: 23869946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Action of Mycobacterium tuberculosis Gyrase Inhibitors: A Novel Class of Gyrase Poisons.
    Gibson EG; Blower TR; Cacho M; Bax B; Berger JM; Osheroff N
    ACS Infect Dis; 2018 Aug; 4(8):1211-1222. PubMed ID: 29746087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
    Fernández-Sierra M; Shao Q; Fountain C; Finzi L; Dunlap D
    J Mol Biol; 2015 Jul; 427(13):2305-18. PubMed ID: 25902201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks.
    McClendon AK; Rodriguez AC; Osheroff N
    J Biol Chem; 2005 Nov; 280(47):39337-45. PubMed ID: 16188892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA).
    Huang YY; Deng JY; Gu J; Zhang ZP; Maxwell A; Bi LJ; Chen YY; Zhou YF; Yu ZN; Zhang XE
    Nucleic Acids Res; 2006; 34(19):5650-9. PubMed ID: 17038336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
    Gubaev A; Klostermeier D
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14085-90. PubMed ID: 21817063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases.
    Dalvie ED; Stacy JC; Neuman KC; Osheroff N
    Biochemistry; 2022 Oct; 61(19):2148-2158. PubMed ID: 36122251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.