These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28922144)

  • 1. Short-term hypoxia and vasa recta function in kidney slices.
    Braun D; Dietze S; Pahlitzsch TMJ; Wennysia IC; Persson PB; Ludwig M; Patzak A
    Clin Hemorheol Microcirc; 2017; 67(3-4):475-484. PubMed ID: 28922144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation.
    Xu M; Lichtenberger FB; Erdoǧan C; Lai E; Persson PB; Patzak A; Khedkar PH
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive responses of rat descending vasa recta to ischemia.
    Zhang Z; Payne K; Pallone TL
    Am J Physiol Renal Physiol; 2018 Mar; 314(3):F373-F380. PubMed ID: 28814437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intact kidney slice model to investigate vasa recta properties and function in situ.
    Crawford C; Kennedy-Lydon T; Sprott C; Desai T; Sawbridge L; Munday J; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Nephron Physiol; 2012; 120(3):p17-31. PubMed ID: 22833057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constriction of the vasa recta, the vessels supplying the area at risk for acute kidney injury, by four different iodinated contrast media, evaluating ionic, nonionic, monomeric and dimeric agents.
    Sendeski M; Patzak A; Persson PB
    Invest Radiol; 2010 Aug; 45(8):453-7. PubMed ID: 20458252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network.
    Lilley RJ; Taylor KD; Wildman SSP; Peppiatt-Wildman CM
    Front Physiol; 2023; 14():1194803. PubMed ID: 37362447
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and perfusion of rat inner medullary vasa recta.
    Evans KK; Nawata CM; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F300-4. PubMed ID: 26062876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta.
    Sendeski MM; Persson AB; Liu ZZ; Busch JF; Weikert S; Persson PB; Hippenstiel S; Patzak A
    Am J Physiol Renal Physiol; 2012 Dec; 303(12):F1592-8. PubMed ID: 23077094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute effect of cyclosporin on inner medullary blood flow in normal and postischemic rat kidney.
    Yagil Y
    Am J Physiol; 1990 May; 258(5 Pt 2):F1139-44. PubMed ID: 2337145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology of the renal medullary microcirculation.
    Pallone TL; Zhang Z; Rhinehart K
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F253-66. PubMed ID: 12529271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy.
    Sendeski M; Patzak A; Pallone TL; Cao C; Persson AE; Persson PB
    Radiology; 2009 Jun; 251(3):697-704. PubMed ID: 19366904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential actions of renal ischemic injury on the intrarenal angiotensin system.
    Allred AJ; Chappell MC; Ferrario CM; Diz DI
    Am J Physiol Renal Physiol; 2000 Oct; 279(4):F636-45. PubMed ID: 10997913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2.
    Pallone TL
    Am J Physiol; 1994 Jun; 266(6 Pt 2):F850-7. PubMed ID: 8023965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal oxygenation in acute renal ischemia-reperfusion injury.
    Abdelkader A; Ho J; Ow CP; Eppel GA; Rajapakse NW; Schlaich MP; Evans RG
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1026-38. PubMed ID: 24598805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An examination of transcapillary water flux in renal inner medulla.
    Sanjana VM; Johnston PA; Robertson CR; Jamison RL
    Am J Physiol; 1976 Aug; 231(2):313-8. PubMed ID: 961881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of captopril on red cell velocity in the vasa recta of the renal medulla.
    Hansell P
    Ups J Med Sci; 1993; 98(2):149-58. PubMed ID: 8184515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of sodium and urea in outer medullary descending vasa recta.
    Pallone TL; Work J; Myers RL; Jamison RL
    J Clin Invest; 1994 Jan; 93(1):212-22. PubMed ID: 8282790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural differences between rat inner medullary descending and ascending vasa recta;
    Schwartz MM; Karnovsky MJ; Vehkatachalam MA
    Lab Invest; 1976 Aug; 35(2):161-70. PubMed ID: 957604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.