These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 28922475)
1. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475 [TBL] [Abstract][Full Text] [Related]
2. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870 [TBL] [Abstract][Full Text] [Related]
3. Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots. Kim S; Marshall AR; Kroupa DM; Miller EM; Luther JM; Jeong S; Beard MC ACS Nano; 2015 Aug; 9(8):8157-64. PubMed ID: 26222812 [TBL] [Abstract][Full Text] [Related]
4. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
5. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
6. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency. Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874 [TBL] [Abstract][Full Text] [Related]
7. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO Zhu M; Liu X; Liu S; Chen C; He J; Liu W; Yang J; Gao L; Niu G; Tang J; Zhang J ACS Appl Mater Interfaces; 2020 Jan; 12(2):2566-2571. PubMed ID: 31854183 [TBL] [Abstract][Full Text] [Related]
8. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy. Zhang Y; Wu G; Ding C; Liu F; Yao Y; Zhou Y; Wu C; Nakazawa N; Huang Q; Toyoda T; Wang R; Hayase S; Zou Z; Shen Q J Phys Chem Lett; 2018 Jul; 9(13):3598-3603. PubMed ID: 29905077 [TBL] [Abstract][Full Text] [Related]
10. Cation-Exchange Enables In Situ Preparation of PbSe Quantum Dot Ink for High Performance Solar Cells. Yuan M; Hu H; Wang Y; Xia H; Zhang X; Wang B; He Z; Yu M; Tan Y; Shi Z; Li K; Yang X; Yang J; Li M; Chen X; Hu L; Peng X; He J; Chen C; Lan X; Tang J Small; 2022 Dec; 18(48):e2205356. PubMed ID: 36251788 [TBL] [Abstract][Full Text] [Related]
11. Photosensitization of ZnO Crystals with Iodide-Capped PbSe Quantum Dots. King LA; Parkinson BA J Phys Chem Lett; 2016 Jul; 7(14):2844-8. PubMed ID: 27398873 [TBL] [Abstract][Full Text] [Related]
12. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. Peng M; Liu Y; Li F; Hong X; Liu Y; Wen Z; Liu Z; Ma W; Sun X ACS Appl Mater Interfaces; 2021 Nov; 13(43):51198-51204. PubMed ID: 34672525 [TBL] [Abstract][Full Text] [Related]
13. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics. He J; Ge Y; Wang Y; Yuan M; Xia H; Zhang X; Chen X; Wang X; Zhou X; Li K; Chen C; Tang J Front Optoelectron; 2023 Oct; 16(1):28. PubMed ID: 37889375 [TBL] [Abstract][Full Text] [Related]
14. Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Asil D; Haciefendioğlu T Turk J Chem; 2021; 45(3):905-913. PubMed ID: 34385875 [TBL] [Abstract][Full Text] [Related]
15. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells. Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115 [TBL] [Abstract][Full Text] [Related]
16. Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. Yao Y; Yu H; Wu Y; Lu Y; Liu Z; Xu X; Ma B; Zhang Q; Chen S; Huang W ACS Omega; 2019 May; 4(5):9150-9159. PubMed ID: 31460003 [TBL] [Abstract][Full Text] [Related]
17. Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Ma R; Ren Z; Li C; Wang Y; Huang Z; Zhao Y; Yang T; Liang Y; Sun XW; Choy WCH Small; 2020 Oct; 16(41):e2002628. PubMed ID: 32964688 [TBL] [Abstract][Full Text] [Related]
18. Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48. Song J; Fang T; Li J; Xu L; Zhang F; Han B; Shan Q; Zeng H Adv Mater; 2018 Dec; 30(50):e1805409. PubMed ID: 30306653 [TBL] [Abstract][Full Text] [Related]
19. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Parveen S; Paul KK; Das R; Giri PK J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025 [TBL] [Abstract][Full Text] [Related]
20. Application of Perovskite Quantum Dots as an Absorber in Perovskite Solar Cells. Chi W; Banerjee SK Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202112412. PubMed ID: 34729885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]