These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28922508)

  • 1. Single Oxidative Collision Events of Silver Nanoparticles: Understanding the Rate-Determining Chemistry.
    Ngamchuea K; Clark ROD; Sokolov SV; Young NP; Batchelor-McAuley C; Compton RG
    Chemistry; 2017 Nov; 23(63):16085-16096. PubMed ID: 28922508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the capping agent on the oxidation of silver nanoparticles: nano-impacts versus stripping voltammetry.
    Toh HS; Jurkschat K; Compton RG
    Chemistry; 2015 Feb; 21(7):2998-3004. PubMed ID: 25581121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection, size characterization and quantification of silver nanoparticles in consumer products by particle collision coulometry.
    Hernández D; Vidal JC; Laborda F; Pérez-Arantegui J; Giménez-Ingalaturre AC; Castillo JR
    Mikrochim Acta; 2021 Jan; 188(1):12. PubMed ID: 33389212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Supporting Ions on the Electrochemical Detection of Individual Silver Nanoparticles: Understanding the Shape and Frequency of Current Transients in Nano-impacts.
    Krause KJ; Brings F; Schnitker J; Kätelhön E; Rinklin P; Mayer D; Compton RG; Lemay SG; Offenhäusser A; Wolfrum B
    Chemistry; 2017 Apr; 23(19):4638-4643. PubMed ID: 28182315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles.
    Toh HS; Batchelor-McAuley C; Tschulik K; Uhlemann M; Crossley A; Compton RG
    Nanoscale; 2013 Jun; 5(11):4884-93. PubMed ID: 23624744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anodic stripping voltammetry of silver nanoparticles: aggregation leads to incomplete stripping.
    Cloake SJ; Toh HS; Lee PT; Salter C; Johnston C; Compton RG
    ChemistryOpen; 2015 Feb; 4(1):22-6. PubMed ID: 25861566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic imaging of electrochemical oxidation of single nanoparticles.
    Fang Y; Wang W; Wo X; Luo Y; Yin S; Wang Y; Shan X; Tao N
    J Am Chem Soc; 2014 Sep; 136(36):12584-7. PubMed ID: 25140732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.
    Zook JM; Long SE; Cleveland D; Geronimo CL; MacCuspie RI
    Anal Bioanal Chem; 2011 Oct; 401(6):1993-2002. PubMed ID: 21808990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles.
    Robinson DA; Liu Y; Edwards MA; Vitti NJ; Oja SM; Zhang B; White HS
    J Am Chem Soc; 2017 Nov; 139(46):16923-16931. PubMed ID: 29083174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Quantification of Silver Nanoparticle Dissolution Kinetics in Simulated Sweat Using Linear Sweep Stripping Voltammetry.
    Hui J; O'Dell ZJ; Rao A; Riley KR
    Environ Sci Technol; 2019 Nov; 53(22):13117-13125. PubMed ID: 31644870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision-Based Electrochemical Detection of Lysozyme Aggregation.
    Kirk KA; Vasilescu A; Andreescu D; Senarathna D; Mondal S; Andreescu S
    Anal Chem; 2021 Feb; 93(4):2026-2037. PubMed ID: 33416307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA capping agent control of electron transfer from silver nanoparticles.
    Tanner EE; Sokolov SV; Young NP; Compton RG
    Phys Chem Chem Phys; 2017 Apr; 19(15):9733-9738. PubMed ID: 28367543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.
    Kostigen Mumper C; Ostermeyer AK; Semprini L; Radniecki TS
    Chemosphere; 2013 Nov; 93(10):2493-8. PubMed ID: 24120011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide removal from waters by silver nanoparticles and hydrogen peroxide.
    Polo AMS; Lopez-Peñalver JJ; Rivera-Utrilla J; Von Gunten U; Sánchez-Polo M
    Sci Total Environ; 2017 Dec; 607-608():649-657. PubMed ID: 28709099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode.
    Yu RJ; Xu SW; Paul S; Ying YL; Cui LF; Daiguji H; Hsu WL; Long YT
    ACS Sens; 2021 Feb; 6(2):335-339. PubMed ID: 33373192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.
    Kent RD; Vikesland PJ
    Environ Sci Technol; 2012 Jul; 46(13):6977-84. PubMed ID: 22191460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays.
    Fu K; Han D; Crouch GM; Kwon SR; Bohn PW
    Small; 2018 May; 14(18):e1703248. PubMed ID: 29377558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation kinetics and dissolution of coated silver nanoparticles.
    Li X; Lenhart JJ; Walker HW
    Langmuir; 2012 Jan; 28(2):1095-104. PubMed ID: 22149007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated Anodic-Cathodic Nanocollision Events Reveal Redox Behaviors of Single Silver Nanoparticles.
    Hafez ME; Ma H; Peng YY; Ma W; Long YT
    J Phys Chem Lett; 2019 Jun; 10(12):3276-3281. PubMed ID: 31141367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.