These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28922569)

  • 1. Strategies for analysis of isomeric peptides.
    Jansson ET
    J Sep Sci; 2018 Jan; 41(1):385-397. PubMed ID: 28922569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry.
    Hurtado PP; O'Connor PB
    Mass Spectrom Rev; 2012; 31(6):609-25. PubMed ID: 22322410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS.
    Gahoual R; Beck A; François YN; Leize-Wagner E
    J Mass Spectrom; 2016 Feb; 51(2):150-8. PubMed ID: 26889931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS).
    Edwards HM; Wu HT; Julian RR; Jackson GP
    Analyst; 2022 Mar; 147(6):1159-1168. PubMed ID: 35188507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry.
    González LJ; Shimizu T; Satomi Y; Betancourt L; Besada V; Padrón G; Orlando R; Shirasawa T; Shimonishi Y; Takao T
    Rapid Commun Mass Spectrom; 2000; 14(22):2092-102. PubMed ID: 11114015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of a set of peptide sequence isomers using differential ion mobility spectrometry.
    Shvartsburg AA; Creese AJ; Smith RD; Cooper HJ
    Anal Chem; 2011 Sep; 83(18):6918-23. PubMed ID: 21863819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry.
    De Boni S; Neusüss C; Pelzing M; Scriba GK
    Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry.
    Gibson K; Cooper-Shepherd DA; Pallister E; Inman SE; Jackson SE; Lindo V
    J Am Soc Mass Spectrom; 2022 Jul; 33(7):1204-1212. PubMed ID: 35609180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of aspartyl peptide degradation products by high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry.
    De Boni S; Oberthür C; Hamburger M; Scriba GK
    J Chromatogr A; 2004 Jan; 1022(1-2):95-102. PubMed ID: 14753775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trade-off between high sensitivity and increased potential for false positive peptide sequence matches using a two-dimensional linear ion trap for tandem mass spectrometry-based proteomics.
    Xie H; Griffin TJ
    J Proteome Res; 2006 Apr; 5(4):1003-9. PubMed ID: 16602709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospray ionization tandem mass spectrometry of protonated and alkali-cationized Boc-N-protected hybrid peptides containing repeats of D-Ala-APyC and APyC-D-Ala: formation of [b(n-1) + OCH3 + Na]+ and [b(n-1) + OH + Na]+ ions.
    Raju G; Purna Chander C; Srinivas Reddy K; Srinivas R; Sharma GV
    Rapid Commun Mass Spectrom; 2012 Nov; 26(22):2591-600. PubMed ID: 23059875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The implications of proteolytic background for shotgun proteomics.
    Picotti P; Aebersold R; Domon B
    Mol Cell Proteomics; 2007 Sep; 6(9):1589-98. PubMed ID: 17533221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates.
    Boersema PJ; Aye TT; van Veen TA; Heck AJ; Mohammed S
    Proteomics; 2008 Nov; 8(22):4624-32. PubMed ID: 18850632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line capillary electrophoresis-mass spectrometry for the analysis of biomolecules.
    Hernández-Borges J; Neusüss C; Cifuentes A; Pelzing M
    Electrophoresis; 2004 Jul; 25(14):2257-81. PubMed ID: 15274009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid chromatography and electron-capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry.
    Palmblad M; Tsybin YO; Ramström M; Bergquist J; Håkansson P
    Rapid Commun Mass Spectrom; 2002; 16(10):988-92. PubMed ID: 11968132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized proteomics and peptidomics using capillary liquid separation and high resolution mass spectrometry.
    Ramström M; Bergquist J
    FEBS Lett; 2004 Jun; 567(1):92-5. PubMed ID: 15165899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation techniques hyphenated to electrospray-tandem mass spectrometry in proteomics: capillary electrophoresis versus nanoliquid chromatography.
    Pelzing M; Neusüss C
    Electrophoresis; 2005 Jul; 26(14):2717-28. PubMed ID: 15966011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection.
    Tomlinson AJ; Chicz RM
    Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary electrophoresis-mass spectrometry of peptides from enzymatic protein hydrolysis: simulation and optimization.
    Simó C; Cifuentes A
    Electrophoresis; 2003 Mar; 24(5):834-42. PubMed ID: 12627445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.