These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 28922632)
1. Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Yang X; Huang P; Wang H; Cai S; Liao Y; Mo Z; Xu X; Ding C; Zhao C; Li J Colloids Surf B Biointerfaces; 2017 Dec; 160():136-143. PubMed ID: 28922632 [TBL] [Abstract][Full Text] [Related]
2. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Kang S; Lee M; Kang M; Noh M; Jeon J; Lee Y; Seo JH Acta Biomater; 2016 Aug; 40():70-77. PubMed ID: 26961806 [TBL] [Abstract][Full Text] [Related]
3. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423 [TBL] [Abstract][Full Text] [Related]
4. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. Wang X; Liu L; Zhou X; Huo Y; Gao J; Gu H BMC Oral Health; 2020 Jun; 20(1):169. PubMed ID: 32532263 [TBL] [Abstract][Full Text] [Related]
5. Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. Cheng Q; Asha AB; Liu Y; Peng YY; Diaz-Dussan D; Shi Z; Cui Z; Narain R ACS Appl Mater Interfaces; 2021 Feb; 13(7):9006-9014. PubMed ID: 33576614 [TBL] [Abstract][Full Text] [Related]
6. Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. Sathishkumar G; Gopinath K; Zhang K; Kang ET; Xu L; Yu Y J Mater Chem B; 2022 Apr; 10(14):2296-2315. PubMed ID: 35060581 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. Xie D; Howard L; Almousa R J Biomater Appl; 2018 Sep; 33(3):340-351. PubMed ID: 30089433 [TBL] [Abstract][Full Text] [Related]
8. Human milk compounds inhibiting adhesion of mutans streptococci to host ligand-coated hydroxyapatite in vitro. Danielsson Niemi L; Hernell O; Johansson I Caries Res; 2009; 43(3):171-8. PubMed ID: 19390191 [TBL] [Abstract][Full Text] [Related]
9. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro. Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Antibacterial Adhesion When Salivary Pellicle Is Coated on Both Poly(2-hydroxyethyl-methacrylate)- and Polyethylene-glycol-methacrylate-grafted Poly(methyl methacrylate). Lee BS; Chen YJ; Wei TC; Ma TL; Chang CC Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223440 [TBL] [Abstract][Full Text] [Related]
12. Biological Effects of Double-Layered Hydroxyapatite and Zirconium Oxide Depositions on Titanium Surfaces. Ji MK; Chun Y; Jeong G; Kim HS; Kim WJ; Ryu JH; Cho H; Lim HP Int J Nanomedicine; 2024; 19():8015-8027. PubMed ID: 39130690 [TBL] [Abstract][Full Text] [Related]
13. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Vahabzadeh S; Roy M; Bandyopadhyay A; Bose S Acta Biomater; 2015 Apr; 17():47-55. PubMed ID: 25638672 [TBL] [Abstract][Full Text] [Related]
14. Effect of Tannic Acid on the Protective Properties of the in situ Formed Pellicle. Hertel S; Pötschke S; Basche S; Delius J; Hoth-Hannig W; Hannig M; Hannig C Caries Res; 2017; 51(1):34-45. PubMed ID: 27960156 [TBL] [Abstract][Full Text] [Related]
15. The anti-biofouling effect of polyphenols against Streptococcus mutans. Sendamangalam V; Choi OK; Kim D; Seo Y Biofouling; 2011 Jan; 27(1):13-9. PubMed ID: 21104475 [TBL] [Abstract][Full Text] [Related]
16. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. Hizal F; Zhuk I; Sukhishvili S; Busscher HJ; van der Mei HC; Choi CH ACS Appl Mater Interfaces; 2015 Sep; 7(36):20304-13. PubMed ID: 26305913 [TBL] [Abstract][Full Text] [Related]
17. Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides. Rodriguez GM; Bowen J; Grossin D; Ben-Nissan B; Stamboulis A Colloids Surf B Biointerfaces; 2017 Dec; 160():154-160. PubMed ID: 28922634 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO Qiaoxia L; Yujie Z; Meng Y; Yizhu C; Yan W; Yinchun H; Xiaojie L; Weiyi C; Di H Colloids Surf B Biointerfaces; 2020 Dec; 196():111304. PubMed ID: 32777663 [TBL] [Abstract][Full Text] [Related]