These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28922830)

  • 21. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution.
    Lee D; Jang C; Park HJ
    Neuroimage; 2019 Mar; 188():680-693. PubMed ID: 30599191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.
    Sorger B; Kamp T; Weiskopf N; Peters JC; Goebel R
    Neuroscience; 2018 May; 378():71-88. PubMed ID: 27659118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review.
    Wang T; Mantini D; Gillebert CR
    Cortex; 2018 Oct; 107():148-165. PubMed ID: 28992948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback.
    Ros T; Théberge J; Frewen PA; Kluetsch R; Densmore M; Calhoun VD; Lanius RA
    Neuroimage; 2013 Jan; 65():324-35. PubMed ID: 23022326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.
    Ruiz S; Buyukturkoglu K; Rana M; Birbaumer N; Sitaram R
    Biol Psychol; 2014 Jan; 95():4-20. PubMed ID: 23643926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.
    Liew SL; Rana M; Cornelsen S; Fortunato de Barros Filho M; Birbaumer N; Sitaram R; Cohen LG; Soekadar SR
    Neurorehabil Neural Repair; 2016 Aug; 30(7):671-5. PubMed ID: 26671217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in fMRI Real-Time Neurofeedback.
    Watanabe T; Sasaki Y; Shibata K; Kawato M
    Trends Cogn Sci; 2017 Dec; 21(12):997-1010. PubMed ID: 29031663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.
    Robineau F; Rieger SW; Mermoud C; Pichon S; Koush Y; Van De Ville D; Vuilleumier P; Scharnowski F
    Neuroimage; 2014 Oct; 100():1-14. PubMed ID: 24904993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Task-based neurofeedback training: A novel approach toward training executive functions.
    Hosseini SMH; Pritchard-Berman M; Sosa N; Ceja A; Kesler SR
    Neuroimage; 2016 Jul; 134():153-159. PubMed ID: 27015711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study.
    Emmert K; Kopel R; Koush Y; Maire R; Senn P; Van De Ville D; Haller S
    Neuroimage Clin; 2017; 14():97-104. PubMed ID: 28154796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-regulating positive emotion networks by feedback of multiple emotional brain states using real-time fMRI.
    Li Z; Tong L; Wang L; Li Y; He W; Guan M; Yan B
    Exp Brain Res; 2016 Dec; 234(12):3575-3586. PubMed ID: 27534862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Real-Time fMRI Neurofeedback to Modulate M1-Cerebellum Connectivity.
    Madkhali Y; Al-Wasity S; Aldehmi N; Pollick F
    Comput Intell Neurosci; 2022; 2022():8744982. PubMed ID: 36082347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery.
    Marins T; Rodrigues EC; Bortolini T; Melo B; Moll J; Tovar-Moll F
    Neuroimage; 2019 Jul; 194():283-290. PubMed ID: 30898654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Connectivity in Frontoparietal Network: Indicator of Preoperative Cognitive Function and Cognitive Outcome Following Surgery in Patients with Glioma.
    Lang S; Gaxiola-Valdez I; Opoku-Darko M; Partlo LA; Goodyear BG; Kelly JJP; Federico P
    World Neurosurg; 2017 Sep; 105():913-922.e2. PubMed ID: 28583454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks.
    Van De Ville D; Jhooti P; Haas T; Kopel R; Lovblad KO; Scheffler K; Haller S
    Neuroimage; 2012 Dec; 63(4):1775-81. PubMed ID: 22960086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Windowed correlation: a suitable tool for providing dynamic fMRI-based functional connectivity neurofeedback on task difficulty.
    Zilverstand A; Sorger B; Zimmermann J; Kaas A; Goebel R
    PLoS One; 2014; 9(1):e85929. PubMed ID: 24465794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.
    Yamada T; Hashimoto RI; Yahata N; Ichikawa N; Yoshihara Y; Okamoto Y; Kato N; Takahashi H; Kawato M
    Int J Neuropsychopharmacol; 2017 Oct; 20(10):769-781. PubMed ID: 28977523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study.
    Spetter MS; Malekshahi R; Birbaumer N; Lührs M; van der Veer AH; Scheffler K; Spuckti S; Preissl H; Veit R; Hallschmid M
    Appetite; 2017 May; 112():188-195. PubMed ID: 28131758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulating motor performance and memory through real-time fMRI neurofeedback.
    Scharnowski F; Veit R; Zopf R; Studer P; Bock S; Diedrichsen J; Goebel R; Mathiak K; Birbaumer N; Weiskopf N
    Biol Psychol; 2015 May; 108():85-97. PubMed ID: 25796342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
    MacInnes JJ; Dickerson KC; Chen NK; Adcock RA
    Neuron; 2016 Mar; 89(6):1331-1342. PubMed ID: 26948894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.