BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 28922845)

  • 1. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast.
    Strucko T; Buron LD; Jarczynska ZD; Nødvig CS; Mølgaard L; Halkier BA; Mortensen UH
    Sci Rep; 2017 Jan; 7():41431. PubMed ID: 28134264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of the Saccharomyces cerevisiae PGU1 gene in Schizosaccharomyces pombe yields an enzyme with more desirable properties for the food industry.
    Sieiro C; Poza M; Vilanova M; Villa TG
    Appl Environ Microbiol; 2003 Mar; 69(3):1861-5. PubMed ID: 12620884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of plasmid architecture on stability and yEGFP3 reporter gene expression in a set of isomeric multicopy vectors in yeast.
    Hohnholz R; Pohlmann KJ; Achstetter T
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8455-8463. PubMed ID: 29052760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae.
    Thompson A; Gasson MJ
    Appl Environ Microbiol; 2001 Aug; 67(8):3434-9. PubMed ID: 11472915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitating stable gene integration expression and copy number amplification in
    Guo H; Tian R; Wu Y; Lv X; Li J; Liu L; Du G; Chen J; Liu Y
    Synth Syst Biotechnol; 2024 Sep; 9(3):577-585. PubMed ID: 38708056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems biotechnology for protein production in Pichia pastoris.
    Zahrl RJ; Peña DA; Mattanovich D; Gasser B
    FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 28934418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae.
    Song X; Li Y; Wu Y; Cai M; Liu Q; Gao K; Zhang X; Bai Y; Xu H; Qiao M
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30107496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling.
    Zou S; Sun S; Zhang X; Li J; Guo J; Hong J; Ma Y; Zhang M
    Biotechnol Appl Biochem; 2021 Oct; 68(5):953-963. PubMed ID: 32658331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae.
    Shi S; Liang Y; Ang EL; Zhao H
    Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Gao S; Zuo W; Kang C; Zou Z; Zhang K; Qiu J; Shang X; Li J; Zhang Y; Zuo Q; Zhao Y; Jin M
    Front Immunol; 2024; 15():1373656. PubMed ID: 38742108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current perspective on production and applications of microbial cellulases: a review.
    Bhardwaj N; Kumar B; Agrawal K; Verma P
    Bioresour Bioprocess; 2021 Oct; 8(1):95. PubMed ID: 38650192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-Induced In Vivo Gene Amplification in Budding Yeast.
    Wang J; Song J; Fan C; Duan J; He K; Yuan J
    Biodes Res; 2024; 6():0030. PubMed ID: 38550916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae.
    Peng B; Esquirol L; Lu Z; Shen Q; Cheah LC; Howard CB; Scott C; Trau M; Dumsday G; Vickers CE
    Nat Commun; 2022 May; 13(1):2895. PubMed ID: 35610221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy.
    Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M
    Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency chromosomal integrative amplification strategy for overexpressing α-amylase in Bacillus licheniformis.
    Shen P; Niu D; Liu X; Tian K; Permaul K; Singh S; Mchunu NP; Wang Z
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35325171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives.
    Feng C; Chen J; Ye W; Liao K; Wang Z; Song X; Qiao M
    Front Bioeng Biotechnol; 2022; 10():833920. PubMed ID: 35127664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae.
    Song X; Liu Q; Mao J; Wu Y; Li Y; Gao K; Zhang X; Bai Y; Xu H; Qiao M
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28922845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-copy genome integration and stable production of p-coumaric acid via a POT1-mediated strategy in Saccharomyces cerevisiae.
    Qi H; Li Y; Cai M; He J; Liu J; Song X; Ma Z; Xu H; Qiao M
    J Appl Microbiol; 2022 Aug; 133(2):707-719. PubMed ID: 35462447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].
    Zhang X; He P; Tao Y; Yang Y
    Wei Sheng Wu Xue Bao; 2013 Nov; 53(11):1195-204. PubMed ID: 24617261
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.