These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 28922946)
1. Temperature simulation of microwave ablation based on improved specific absorption rate method compared to phantom measurements. Gao H; Wu S; Wang X; Hu R; Zhou Z; Sun X Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):9-17. PubMed ID: 28922946 [TBL] [Abstract][Full Text] [Related]
2. Numerical study on thermal field of microwave ablation with water-cooled antenna. Lu Y; Nan Q; Li L; Liu Y Int J Hyperthermia; 2009 Mar; 25(2):108-15. PubMed ID: 19337911 [TBL] [Abstract][Full Text] [Related]
3. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Deshazer G; Prakash P; Merck D; Haemmerich D Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040 [TBL] [Abstract][Full Text] [Related]
4. Thermal field study of ceramic slot microwave ablation antenna based on specific absorption rate distribution function. Wang Y; Jiang R; Yu J J Cancer Res Ther; 2020 Sep; 16(5):1140-1147. PubMed ID: 33004761 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom. McCann C; Kumaradas JC; Gertner MR; Davidson SR; Dolan AM; Sherar MD Phys Med Biol; 2003 Apr; 48(8):1041-52. PubMed ID: 12741500 [TBL] [Abstract][Full Text] [Related]
6. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy. Du Y; Zhang L; Sang L; Wu D Technol Health Care; 2016 Apr; 24 Suppl 2():S675-82. PubMed ID: 27177098 [TBL] [Abstract][Full Text] [Related]
7. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation. Liu YJ; Qiao AK; Nan Q; Yang XY Int J Hyperthermia; 2006 Sep; 22(6):491-506. PubMed ID: 16971369 [TBL] [Abstract][Full Text] [Related]
8. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Chakaravarthi G; Arunachalam K Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603 [TBL] [Abstract][Full Text] [Related]
9. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540 [TBL] [Abstract][Full Text] [Related]
10. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement. Pisa S; Cavagnaro M; Bernardi P; Lin JC IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534 [TBL] [Abstract][Full Text] [Related]
11. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations. Ai H; Wu S; Gao H; Zhao L; Yang C; Zeng Y Int J Hyperthermia; 2012; 28(7):674-85. PubMed ID: 22946504 [TBL] [Abstract][Full Text] [Related]
13. Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment. Shera MD; Gladman AS; Davidson SR; Trachtenberg J; Gertner MR Phys Med Biol; 2001 Jul; 46(7):1905-18. PubMed ID: 11474933 [TBL] [Abstract][Full Text] [Related]
14. Studies on the three-dimensional temperature transients in the canine prostate during transurethral microwave thermal therapy. Liu J; Zhu L; Xu LX J Biomech Eng; 2000 Aug; 122(4):372-9. PubMed ID: 11036560 [TBL] [Abstract][Full Text] [Related]
15. Quantification of the 3-D electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model. Zhu L; Xu LX; Chencinski N IEEE Trans Biomed Eng; 1998 Sep; 45(9):1163-72. PubMed ID: 9735566 [TBL] [Abstract][Full Text] [Related]
16. A method for safety testing of radiofrequency/microwave-emitting devices using MRI. Alon L; Cho GY; Yang X; Sodickson DK; Deniz CM Magn Reson Med; 2015 Nov; 74(5):1397-405. PubMed ID: 25424724 [TBL] [Abstract][Full Text] [Related]
17. Comparison of two-dimensional numerical approximation and measurement of SAR in a muscle equivalent phantom exposed to a 915 MHz slab-loaded waveguide. Rine GP; Samulski TV; Grant W; Wallen CA Int J Hyperthermia; 1990; 6(1):213-25. PubMed ID: 2299234 [TBL] [Abstract][Full Text] [Related]
18. Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia. Cappiello G; McGinley B; Elahi MA; Drizdal T; Paulides MM; Glavin M; O'Halloran M; Jones E IEEE Trans Biomed Eng; 2017 Aug; 64(8):1875-1885. PubMed ID: 28113287 [TBL] [Abstract][Full Text] [Related]
19. Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach. Boregowda G; Mariappan P Int J Numer Method Biomed Eng; 2024 Aug; 40(8):e3835. PubMed ID: 38800993 [TBL] [Abstract][Full Text] [Related]
20. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array. Gas P; Miaskowski A; Subramanian M Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]