These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A CFD approach to understand nasoseptal perforations. Burgos MA; Sanmiguel-Rojas E; Rodríguez R; Esteban-Ortega F Eur Arch Otorhinolaryngol; 2018 Sep; 275(9):2265-2272. PubMed ID: 30043077 [TBL] [Abstract][Full Text] [Related]
6. Virtual septoplasty: a method to predict surgical outcomes for patients with nasal airway obstruction. Moghaddam MG; Garcia GJM; Frank-Ito DO; Kimbell JS; Rhee JS Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):725-735. PubMed ID: 32078099 [TBL] [Abstract][Full Text] [Related]
7. Acoustic rhinometry and video endoscopic scoring to evaluate postoperative outcomes in endonasal spreader graft surgery with septoplasty and turbinoplasty for nasal valve collapse. Erickson B; Hurowitz R; Jeffery C; Ansari K; El Hakim H; Wright ED; Seikaly H; Greig SR; Côté DW J Otolaryngol Head Neck Surg; 2016 Jan; 45():2. PubMed ID: 26754620 [TBL] [Abstract][Full Text] [Related]
8. Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study. Radulesco T; Meister L; Bouchet G; Varoquaux A; Giordano J; Mancini J; Dessi P; Perrier P; Michel J Clin Otolaryngol; 2019 Jul; 44(4):603-611. PubMed ID: 31004557 [TBL] [Abstract][Full Text] [Related]
9. Use of computational fluid dynamics nasal airflow measurement to design septoplasty: a pilot study. Mahasittiwat V; Hemtiwakorn K; Pintavirooj C J Med Assoc Thai; 2013 Jan; 96 Suppl 1():S12-7. PubMed ID: 23724450 [TBL] [Abstract][Full Text] [Related]
10. Prospective cohort study on short-term evaluation of septoplasty as early management of naso-septal fractures - A correlation of clinical outcomes with computational fluid dynamic parameters. Kumar M; Panneerselvam E; Prabhu K; Ganesh SK; Vb KKR J Stomatol Oral Maxillofac Surg; 2022 Nov; 123(6):639-644. PubMed ID: 35853555 [TBL] [Abstract][Full Text] [Related]
12. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372 [TBL] [Abstract][Full Text] [Related]
13. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy. A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807 [TBL] [Abstract][Full Text] [Related]
14. Aerodynamic impact of total inferior turbinectomy versus inferior turbinoplasty - a computational fluid dynamics study. Siu J; Inthavong K; Shang Y; Vahaji S; Douglas RG Rhinology; 2020 Aug; 58(4):349-359. PubMed ID: 32285046 [TBL] [Abstract][Full Text] [Related]
15. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report. Kimbell JS; Garcia GJ; Frank DO; Cannon DE; Pawar SS; Rhee JS Am J Rhinol Allergy; 2012; 26(3):e94-8. PubMed ID: 22643935 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Airflow Between Spreader Grafts and Butterfly Grafts Using Computational Flow Dynamics in a Cadaveric Model. Brandon BM; Austin GK; Fleischman G; Basu S; Kimbell JS; Shockley WW; Clark JM JAMA Facial Plast Surg; 2018 May; 20(3):215-221. PubMed ID: 29242911 [TBL] [Abstract][Full Text] [Related]
17. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review. Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660 [TBL] [Abstract][Full Text] [Related]