These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28923739)

  • 1. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features.
    Abolghasemibizaki M; McMasters RL; Mohammadi R
    J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet Impact on Superhydrophobic Mesh Surfaces.
    Chen X; Sun JJ; Zheng SF; Wei BJ; Zhang LZ; Gao SR; Yang YR; Wang XD
    Langmuir; 2024 Aug; 40(32):17049-17059. PubMed ID: 39083646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop.
    Patterson CJ; Shiri S; Bird JC
    J Phys Condens Matter; 2017 Feb; 29(6):064007. PubMed ID: 28002051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial spreading of droplet impact on ridged superhydrophobic surfaces.
    Hu Z; Zhang X; Gao S; Yuan Z; Lin Y; Chu F; Wu X
    J Colloid Interface Sci; 2021 Oct; 599():130-139. PubMed ID: 33933788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double Droplets Impact an Inclined Superhydrophobic Surface.
    Gao SR; Huang XY; Liu Z; Sun JJ; Yang YR; Wang XD
    Langmuir; 2024 Jun; 40(24):12818-12827. PubMed ID: 38842118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.
    Graeber G; Martin Kieliger OB; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43275-43281. PubMed ID: 30452216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge.
    Chen X; Wang YF; Yang YR; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.