These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 28923741)
1. Influence of molybdenum doping on the structural, optical and electronic properties of WO Kalanur SS; Seo H J Colloid Interface Sci; 2018 Jan; 509():440-447. PubMed ID: 28923741 [TBL] [Abstract][Full Text] [Related]
2. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830 [TBL] [Abstract][Full Text] [Related]
3. Surface Engineering of Anodic WO Syrek K; Kotarba S; Zych M; Pisarek M; Uchacz T; Sobańska K; Pięta Ł; Sulka GD ACS Appl Mater Interfaces; 2024 Jul; 16(28):36752-36762. PubMed ID: 38968082 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes. Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058 [TBL] [Abstract][Full Text] [Related]
5. A new insight into vacancy modulation in lead-doped tungsten oxide nonarchitect for photoelectrochemical water splitting: An experimental and density functional theory approach. Ali RB; Lee YJ; Sial QA; Duy LT; Seo H J Colloid Interface Sci; 2024 Jul; 665():19-31. PubMed ID: 38513405 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional WO Wang Y; Tian W; Chen L; Cao F; Guo J; Li L ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799 [TBL] [Abstract][Full Text] [Related]
7. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods. Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of an Efficient N, S Co-Doped WO Li D; Wu F; Gao C; Shen H; Han F; Han F; Chen Z Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745417 [TBL] [Abstract][Full Text] [Related]
9. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. Zhang J; Liu Z; Liu Z ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422 [TBL] [Abstract][Full Text] [Related]
10. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting. Feng X; Chen Y; Qin Z; Wang M; Guo L ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739 [TBL] [Abstract][Full Text] [Related]
11. One-Step Rapid and Scalable Flame Synthesis of Efficient WO Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641 [TBL] [Abstract][Full Text] [Related]
12. Effect of silver doping on the band gap tuning of tungsten oxide thin films for optoelectronic applications. Arifuzzaman M; Saha T; Podder J; Al-Bin F; Das HN Heliyon; 2024 Mar; 10(6):e27761. PubMed ID: 38545163 [TBL] [Abstract][Full Text] [Related]
13. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. Zhang N; Chen C; Mei Z; Liu X; Qu X; Li Y; Li S; Qi W; Zhang Y; Ye J; Roy VA; Ma R ACS Appl Mater Interfaces; 2016 Apr; 8(16):10367-74. PubMed ID: 27045790 [TBL] [Abstract][Full Text] [Related]
14. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting. Ding JR; Kim KS J Nanosci Nanotechnol; 2016 Feb; 16(2):1578-82. PubMed ID: 27433624 [TBL] [Abstract][Full Text] [Related]
15. Dual functional WO Peerakiatkhajohn P; Yun JH; Butburee T; Lyu M; Takoon C; Thaweesak S RSC Adv; 2023 Jun; 13(27):18974-18982. PubMed ID: 37362599 [TBL] [Abstract][Full Text] [Related]
16. One-Step Dry Coating of Hybrid ZnO-WO Malik MS; Roy D; Chun DM; Abd-Elrahim AG Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138358 [TBL] [Abstract][Full Text] [Related]
17. Improved Photoelectrochemical Performance of WO Nomellini C; Polo A; Mesa CA; Pastor E; Marra G; Grigioni I; Dozzi MV; Giménez S; Selli E ACS Appl Mater Interfaces; 2023 Nov; 15(45):52436-47. PubMed ID: 37921705 [TBL] [Abstract][Full Text] [Related]
18. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
19. Sonochemical-driven ultrafast facile synthesis of WO Soltani T; Tayyebi A; Lee BK Ultrason Sonochem; 2019 Jan; 50():230-238. PubMed ID: 30270006 [TBL] [Abstract][Full Text] [Related]
20. Designing WO Wang Y; Chen C; Tian W; Xu W; Li L Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]