These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 28923936)

  • 1. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
    Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Isolation of Exosomes Using Microfluidic Technologies.
    Hassanpour Tamrin S; Sanati Nezhad A; Sen A
    ACS Nano; 2021 Nov; 15(11):17047-17079. PubMed ID: 34723478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field.
    Tayebi M; Yang D; Collins DJ; Ai Y
    Nano Lett; 2021 Aug; 21(16):6835-6842. PubMed ID: 34355908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Extracellular Vesicles by a Microfluidic Platform to Diagnose and Monitor Pancreatic Cancer.
    Sancho-Albero M; Sebastián V
    Methods Mol Biol; 2023; 2679():181-191. PubMed ID: 37300616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosome isolation using nanostructures and microfluidic devices.
    Le MN; Fan ZH
    Biomed Mater; 2021 Feb; 16(2):022005. PubMed ID: 33477118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows.
    Liu C; Guo J; Tian F; Yang N; Yan F; Ding Y; Wei J; Hu G; Nie G; Sun J
    ACS Nano; 2017 Jul; 11(7):6968-6976. PubMed ID: 28679045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics.
    Yang D; Zhang W; Zhang H; Zhang F; Chen L; Ma L; Larcher LM; Chen S; Liu N; Zhao Q; Tran PHL; Chen C; Veedu RN; Wang T
    Theranostics; 2020; 10(8):3684-3707. PubMed ID: 32206116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications.
    Lin S; Yu Z; Chen D; Wang Z; Miao J; Li Q; Zhang D; Song J; Cui D
    Small; 2020 Mar; 16(9):e1903916. PubMed ID: 31663295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes.
    Kanwar SS; Dunlay CJ; Simeone DM; Nagrath S
    Lab Chip; 2014 Jun; 14(11):1891-900. PubMed ID: 24722878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of size-selective microfluidic platform.
    Chen Z; Yamaguchi H; Kameoka J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5661-5664. PubMed ID: 31947137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosome isolation: a microfluidic road-map.
    Liga A; Vliegenthart AD; Oosthuyzen W; Dear JW; Kersaudy-Kerhoas M
    Lab Chip; 2015 Jun; 15(11):2388-94. PubMed ID: 25940789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Acoustofluidics in Bioanalytical Chemistry.
    Li P; Huang TJ
    Anal Chem; 2019 Jan; 91(1):757-767. PubMed ID: 30561981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of acoustofluidic separation of bioparticles.
    Hossein F; Angeli P
    Biophys Rev; 2023 Dec; 15(6):2005-2025. PubMed ID: 38192342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy.
    Wang J; Ma P; Kim DH; Liu BF; Demirci U
    Nano Today; 2021 Apr; 37():. PubMed ID: 33777166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic on-demand engineering of exosomes towards cancer immunotherapy.
    Zhao Z; McGill J; Gamero-Kubota P; He M
    Lab Chip; 2019 May; 19(10):1877-1886. PubMed ID: 31044204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device.
    Bu Y; Wang J; Ni S; Guo Y; Yobas L
    Lab Chip; 2023 May; 23(10):2421-2433. PubMed ID: 36951129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer Liquid Biopsy Using Integrated Microfluidic Exosome Analysis Platforms.
    Li G; Tang W; Yang F
    Biotechnol J; 2020 May; 15(5):e1900225. PubMed ID: 32032977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits.
    Shirejini SZ; Inci F
    Biotechnol Adv; 2022; 54():107814. PubMed ID: 34389465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microfluidic strategies for separation and analysis of circulating exosomes].
    Chen W; Gan Z; Qin J
    Se Pu; 2021 Sep; 39(9):968-980. PubMed ID: 34486836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.