BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 28923949)

  • 1. Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in
    Su XA; Freudenreich CH
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8392-E8401. PubMed ID: 28923949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R-loops: targets for nuclease cleavage and repeat instability.
    Freudenreich CH
    Curr Genet; 2018 Aug; 64(4):789-794. PubMed ID: 29327083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae.
    Polleys EJ; Freudenreich CH
    Methods Mol Biol; 2018; 1672():403-419. PubMed ID: 29043639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in
    Koch MR; House NCM; Cosetta CM; Jong RM; Salomon CG; Joyce CE; Philips EA; Su XA; Freudenreich CH
    Genetics; 2018 Mar; 208(3):963-976. PubMed ID: 29305386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.
    Nguyen JHG; Viterbo D; Anand RP; Verra L; Sloan L; Richard GF; Freudenreich CH
    Nucleic Acids Res; 2017 May; 45(8):4519-4531. PubMed ID: 28175398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast.
    Jankowski C; Nasar F; Nag DK
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2134-9. PubMed ID: 10681451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Assays to Study Repeat Fragility in Saccharomyces cerevisiae.
    Polleys EJ; Freudenreich CH
    Methods Mol Biol; 2020; 2056():83-101. PubMed ID: 31586342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.
    Su XA; Dion V; Gasser SM; Freudenreich CH
    Genes Dev; 2015 May; 29(10):1006-17. PubMed ID: 25940904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities.
    Laverde EE; Lai Y; Leng F; Balakrishnan L; Freudenreich CH; Liu Y
    J Biol Chem; 2020 Oct; 295(40):13902-13913. PubMed ID: 32763971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions.
    Brown RE; Su XA; Fair S; Wu K; Verra L; Jong R; Andrykovich K; Freudenreich CH
    PLoS Biol; 2022 Dec; 20(12):e3001940. PubMed ID: 36574440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded CAG repeats activate the DNA damage checkpoint pathway.
    Lahiri M; Gustafson TL; Majors ER; Freudenreich CH
    Mol Cell; 2004 Jul; 15(2):287-93. PubMed ID: 15260979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function.
    Gellon L; Kaushal S; Cebrián J; Lahiri M; Mirkin SM; Freudenreich CH
    Nucleic Acids Res; 2019 Jan; 47(2):794-805. PubMed ID: 30476303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
    Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH
    PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.