BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 28924011)

  • 21. Monocular deprivation during the critical period alters neuronal tuning and the composition of visual circuitry.
    Brown TC; McGee AW
    PLoS Biol; 2023 Apr; 21(4):e3002096. PubMed ID: 37083549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex.
    Nishio N; Hayashi K; Ishikawa AW; Yoshimura Y
    J Physiol; 2021 Sep; 599(17):4131-4152. PubMed ID: 34275157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contributions of excitation and suppression in shaping spatial frequency selectivity of V1 neurons as revealed by binocular measurements.
    Ninomiya T; Sanada TM; Ohzawa I
    J Neurophysiol; 2012 Apr; 107(8):2220-31. PubMed ID: 22236707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex.
    La Chioma A; Bonhoeffer T; Hübener M
    Curr Biol; 2019 Sep; 29(17):2954-2960.e5. PubMed ID: 31422884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique Spatial Integration in Mouse Primary Visual Cortex and Higher Visual Areas.
    Murgas KA; Wilson AM; Michael V; Glickfeld LL
    J Neurosci; 2020 Feb; 40(9):1862-1873. PubMed ID: 31949109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse
    Scholl B; Pattadkal JJ; Rowe A; Priebe NJ
    J Neurophysiol; 2017 Mar; 117(3):910-918. PubMed ID: 27927787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse modes of binocular interactions in the mouse superior colliculus.
    Russell AL; Dixon KG; Triplett JW
    J Neurophysiol; 2022 Apr; 127(4):913-927. PubMed ID: 35294270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response Selectivity of the Lateral Posterior Nucleus Axons Projecting to the Mouse Primary Visual Cortex.
    Kondo S; Kiyohara Y; Ohki K
    Front Neural Circuits; 2022; 16():825735. PubMed ID: 35296036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical maps of separable tuning properties predict population responses to complex visual stimuli.
    Baker TI; Issa NP
    J Neurophysiol; 2005 Jul; 94(1):775-87. PubMed ID: 15758052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex.
    Moore BD; Alitto HJ; Usrey WM
    J Neurophysiol; 2005 Aug; 94(2):1336-45. PubMed ID: 15872063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial clustering of tuning in mouse primary visual cortex.
    Ringach DL; Mineault PJ; Tring E; Olivas ND; Garcia-Junco-Clemente P; Trachtenberg JT
    Nat Commun; 2016 Aug; 7():12270. PubMed ID: 27481398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Population encoding of spatial frequency, orientation, and color in macaque V1.
    Victor JD; Purpura K; Katz E; Mao B
    J Neurophysiol; 1994 Nov; 72(5):2151-66. PubMed ID: 7884450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature selectivity is stable in primary visual cortex across a range of spatial frequencies.
    Jeon BB; Swain AD; Good JT; Chase SM; Kuhlman SJ
    Sci Rep; 2018 Oct; 8(1):15288. PubMed ID: 30327571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and temporal matching of receptive field properties of binocular cells in area 19 of the cat.
    Bergeron A; Tardif E; Lepore F; Guillemot JP
    Neuroscience; 1998 Sep; 86(1):121-34. PubMed ID: 9692748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encoding of binocular disparity by simple cells in the cat's visual cortex.
    Ohzawa I; DeAngelis GC; Freeman RD
    J Neurophysiol; 1996 May; 75(5):1779-805. PubMed ID: 8734580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experience-Dependent Reorganization Drives Development of a Binocularly Unified Cortical Representation of Orientation.
    Chang JT; Whitney D; Fitzpatrick D
    Neuron; 2020 Jul; 107(2):338-350.e5. PubMed ID: 32428433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binocular Neuronal Processing of Object Motion in an Arthropod.
    Scarano F; Sztarker J; Medan V; Berón de Astrada M; Tomsic D
    J Neurosci; 2018 Aug; 38(31):6933-6948. PubMed ID: 30012687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The binocular organization of simple cells in the cat's visual cortex.
    Ohzawa I; Freeman RD
    J Neurophysiol; 1986 Jul; 56(1):221-42. PubMed ID: 3746398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.