These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28924224)
1. Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Zeisberger M; Schmidt MA Sci Rep; 2017 Sep; 7(1):11761. PubMed ID: 28924224 [TBL] [Abstract][Full Text] [Related]
2. Anti-resonance, inhibited coupling and mode transition in depressed core fibers. Lian X; Farrell G; Wu Q; Han W; Shen C; Ma Y; Semenova Y Opt Express; 2020 May; 28(11):16526-16541. PubMed ID: 32549473 [TBL] [Abstract][Full Text] [Related]
3. Approximate model for analyzing band structures of single-ring hollow-core anti-resonant fibers. Ando RF; Hartung A; Jang B; Schmidt MA Opt Express; 2019 Apr; 27(7):10009-10021. PubMed ID: 31045148 [TBL] [Abstract][Full Text] [Related]
4. Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers. Zeisberger M; Tuniz A; Schmidt MA Opt Express; 2016 Sep; 24(18):20515-28. PubMed ID: 27607656 [TBL] [Abstract][Full Text] [Related]
6. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. Yu F; Xu M; Knight JC Opt Express; 2016 Jun; 24(12):12969-75. PubMed ID: 27410316 [TBL] [Abstract][Full Text] [Related]
7. Interpreting light guidance in antiresonant and photonic bandgap waveguides and fibers by light scattering: analytical model and ultra-low guidance. Li G; Fatobene Ando R; Zeisberger M; Weiss T; Schmidt MA Opt Express; 2022 Jan; 30(2):2768-2779. PubMed ID: 35209410 [TBL] [Abstract][Full Text] [Related]
8. Author Correction: Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Zeisberger M; Schmidt MA Sci Rep; 2018 Jan; 8(1):1743. PubMed ID: 29367631 [TBL] [Abstract][Full Text] [Related]
9. Second-Order Vector Mode Propagation in Hollow-Core Antiresonant Fibers. Li L; Xiao L Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181595 [TBL] [Abstract][Full Text] [Related]
15. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Zhang Z; Shi Y; Bian B; Lu J Opt Express; 2008 Feb; 16(3):1915-22. PubMed ID: 18542270 [TBL] [Abstract][Full Text] [Related]
16. Waveguiding mechanism in tube lattice fibers. Vincetti L; Setti V Opt Express; 2010 Oct; 18(22):23133-46. PubMed ID: 21164654 [TBL] [Abstract][Full Text] [Related]
17. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms. Saitoh K; Florous NJ; Murao T; Koshiba M Opt Express; 2006 Aug; 14(16):7342-52. PubMed ID: 19529103 [TBL] [Abstract][Full Text] [Related]
18. Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers. Selim Habib M; Markos C; Amezcua-Correa R Opt Express; 2021 Feb; 29(3):3359-3374. PubMed ID: 33770935 [TBL] [Abstract][Full Text] [Related]
19. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Uebel P; Günendi MC; Frosz MH; Ahmed G; Edavalath NN; Ménard JM; Russell PS Opt Lett; 2016 May; 41(9):1961-4. PubMed ID: 27128049 [TBL] [Abstract][Full Text] [Related]
20. Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling. Renversez G; Boyer P; Sagrini A Opt Express; 2006 Jun; 14(12):5682-7. PubMed ID: 19516737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]