BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28924236)

  • 21. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo.
    Ter Veer MJT; Pfeiffer T; Nägerl UV
    Methods Mol Biol; 2017; 1663():45-64. PubMed ID: 28924658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods to measure actin treadmilling rate in dendritic spines.
    Koskinen M; Bertling E; Hotulainen P
    Methods Enzymol; 2012; 505():47-58. PubMed ID: 22289447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.
    Takasaki KT; Ding JB; Sabatini BL
    Biophys J; 2013 Feb; 104(4):770-7. PubMed ID: 23442955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actin redistribution underlies the sparing effect of mild hypothermia on dendritic spine morphology after in vitro ischemia.
    Gisselsson LL; Matus A; Wieloch T
    J Cereb Blood Flow Metab; 2005 Oct; 25(10):1346-55. PubMed ID: 15874974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of the actin regulator cyclase-associated protein 1 (CAP1) modestly affects dendritic spine remodeling during synaptic plasticity.
    Heinze A; Rust MB
    Eur J Cell Biol; 2023 Dec; 102(4):151357. PubMed ID: 37634312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon excitation STED microscopy in two colors in acute brain slices.
    Bethge P; Chéreau R; Avignone E; Marsicano G; Nägerl UV
    Biophys J; 2013 Feb; 104(4):778-85. PubMed ID: 23442956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.
    Tjia M; Yu X; Jammu LS; Lu J; Zuo Y
    Front Neural Circuits; 2017; 11():43. PubMed ID: 28674487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy.
    Morozova KS; Piatkevich KD; Gould TJ; Zhang J; Bewersdorf J; Verkhusha VV
    Biophys J; 2010 Jul; 99(2):L13-5. PubMed ID: 20643047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.
    Hein B; Willig KI; Hell SW
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14271-6. PubMed ID: 18796604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. STED microscopy for nanoscale imaging in living brain slices.
    Chéreau R; Tønnesen J; Nägerl UV
    Methods; 2015 Oct; 88():57-66. PubMed ID: 26070997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spine neck plasticity regulates compartmentalization of synapses.
    Tønnesen J; Katona G; Rózsa B; Nägerl UV
    Nat Neurosci; 2014 May; 17(5):678-85. PubMed ID: 24657968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex.
    Phoumthipphavong V; Barthas F; Hassett S; Kwan AC
    eNeuro; 2016; 3(2):. PubMed ID: 27066532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy.
    Wegner W; Steffens H; Gregor C; Wolf F; Willig KI
    Elife; 2022 Feb; 11():. PubMed ID: 35195066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscopy of filamentous actin in cortical dendrites of a living mouse.
    Willig KI; Steffens H; Gregor C; Herholt A; Rossner MJ; Hell SW
    Biophys J; 2014 Jan; 106(1):L01-3. PubMed ID: 24411266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation.
    Lauterbach MA; Guillon M; Desnos C; Khamsing D; Jaffal Z; Darchen F; Emiliani V
    Neurophotonics; 2016 Oct; 3(4):041806. PubMed ID: 27413766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe.
    Izeddin I; Specht CG; Lelek M; Darzacq X; Triller A; Zimmer C; Dahan M
    PLoS One; 2011 Jan; 6(1):e15611. PubMed ID: 21264214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dendritic spines and pre-synaptic boutons are stable despite local deep hypothermic challenge and re-warming in vivo.
    Xie Y; Chen S; Murphy T
    PLoS One; 2012; 7(5):e36305. PubMed ID: 22563488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dynamic cytoskeleton: backbone of dendritic spine plasticity.
    Dent EW; Merriam EB; Hu X
    Curr Opin Neurobiol; 2011 Feb; 21(1):175-81. PubMed ID: 20832290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable but not rigid: Chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity.
    Steffens H; Mott AC; Li S; Wegner W; Švehla P; Kan VWY; Wolf F; Liebscher S; Willig KI
    Sci Adv; 2021 Jun; 7(24):. PubMed ID: 34108204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation.
    Bencsik N; Szíber Z; Liliom H; Tárnok K; Borbély S; Gulyás M; Rátkai A; Szűcs A; Hazai-Novák D; Ellwanger K; Rácz B; Pfizenmaier K; Hausser A; Schlett K
    J Cell Biol; 2015 Aug; 210(5):771-83. PubMed ID: 26304723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.