These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 28924568)
1. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. Trakoolwilaiwan T; Behboodi B; Lee J; Kim K; Choi JW Neurophotonics; 2018 Jan; 5(1):011008. PubMed ID: 28924568 [TBL] [Abstract][Full Text] [Related]
2. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177 [TBL] [Abstract][Full Text] [Related]
3. CNN-based classification of fNIRS signals in motor imagery BCI system. Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480 [No Abstract] [Full Text] [Related]
4. Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339 [TBL] [Abstract][Full Text] [Related]
5. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382 [TBL] [Abstract][Full Text] [Related]
6. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks. Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077 [TBL] [Abstract][Full Text] [Related]
7. fNIRS-based brain-computer interfaces: a review. Naseer N; Hong KS Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060 [TBL] [Abstract][Full Text] [Related]
8. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
9. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces. Aydin EA Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382 [TBL] [Abstract][Full Text] [Related]
11. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks. Kwon J; Im CH Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674 [TBL] [Abstract][Full Text] [Related]
12. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals. Khan H; Noori FM; Yazidi A; Uddin MZ; Khan MNA; Mirtaheri P Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883949 [TBL] [Abstract][Full Text] [Related]
13. Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification. Zhang Y; Allem JP; Unger JB; Boley Cruz T J Med Internet Res; 2018 Nov; 20(11):e10513. PubMed ID: 30452385 [TBL] [Abstract][Full Text] [Related]
14. Discrimination of Two-Class Motor Imagery in a fNIRS Based Brain Computer Interface. Moslehi AH; Bagheri M; Ludwig AM; Davies TC Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4051-4054. PubMed ID: 33018888 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features. Li R; Potter T; Huang W; Zhang Y Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method. Nazeer H; Naseer N; Mehboob A; Khan MJ; Khan RA; Khan US; Ayaz Y Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297516 [TBL] [Abstract][Full Text] [Related]
18. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
19. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Hong KS; Khan MJ; Hong MJ Front Hum Neurosci; 2018; 12():246. PubMed ID: 30002623 [TBL] [Abstract][Full Text] [Related]
20. A fresh look at functional link neural network for motor imagery-based brain-computer interface. Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]