BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 28924608)

  • 1. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
    Rijal G; Li W
    Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct phenotypes of cancer cells on tissue matrix gel.
    Ruud KF; Hiscox WC; Yu I; Chen RK; Li W
    Breast Cancer Res; 2020 Jul; 22(1):82. PubMed ID: 32736579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing.
    Yip D; Cho CH
    Biochem Biophys Res Commun; 2013 Apr; 433(3):327-32. PubMed ID: 23501105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed
    Chen H; Cheng Y; Wang X; Wang J; Shi X; Li X; Tan W; Tan Z
    Theranostics; 2020; 10(26):12127-12143. PubMed ID: 33204333
    [No Abstract]   [Full Text] [Related]  

  • 6. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porcine Breast Extracellular Matrix Hydrogel for Spatial Tissue Culture.
    Rijal G; Wang J; Yu I; Gang DR; Chen RK; Li W
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30257480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds.
    Bulysheva AA; Bowlin GL; Petrova SP; Yeudall WA
    Biomed Mater; 2013 Oct; 8(5):055009. PubMed ID: 24057893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 3D matrix compositions on the efficacy of EGFR inhibition in pancreatic ductal adenocarcinoma cells.
    Ki CS; Shih H; Lin CC
    Biomacromolecules; 2013 Sep; 14(9):3017-26. PubMed ID: 23889305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.
    Prestwich GD
    Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment.
    Stankevicius V; Vasauskas G; Bulotiene D; Butkyte S; Jarmalaite S; Rotomskis R; Suziedelis K
    BMC Cancer; 2016 Oct; 16(1):789. PubMed ID: 27729023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    Anal Biochem; 2017 Oct; 535():25-34. PubMed ID: 28757092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional in vitro tumor models for cancer research and drug evaluation.
    Xu X; Farach-Carson MC; Jia X
    Biotechnol Adv; 2014 Nov; 32(7):1256-1268. PubMed ID: 25116894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple comparisons of three different sources of biomaterials in the application of tumor tissue engineering in vitro and in vivo.
    Li W; Hu X; Wang S; Xing Y; Wang H; Nie Y; Liu T; Song K
    Int J Biol Macromol; 2019 Jun; 130():166-176. PubMed ID: 30807798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.
    Sandercock AM; Rust S; Guillard S; Sachsenmeier KF; Holoweckyj N; Hay C; Flynn M; Huang Q; Yan K; Herpers B; Price LS; Soden J; Freeth J; Jermutus L; Hollingsworth R; Minter R
    Mol Cancer; 2015 Jul; 14():147. PubMed ID: 26227951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells.
    Kundu B; Saha P; Datta K; Kundu SC
    Biomaterials; 2013 Dec; 34(37):9462-74. PubMed ID: 24016853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mini-Organo: A rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development.
    Chitty JL; Skhinas JN; Filipe EC; Wang S; Cupello CR; Grant RD; Yam M; Papanicolaou M; Major G; Zaratzian A; Da Silva AM; Tayao M; Vennin C; Timpson P; Madsen CD; Cox TR
    Cancer Rep (Hoboken); 2020 Feb; 3(1):e1209. PubMed ID: 32671954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.