These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28924628)

  • 1. A recurrent neural model for proto-object based contour integration and figure-ground segregation.
    Hu B; Niebur E
    J Comput Neurosci; 2017 Dec; 43(3):227-242. PubMed ID: 28924628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.
    Brosch T; Neumann H; Roelfsema PR
    PLoS Comput Biol; 2015 Oct; 11(10):e1004489. PubMed ID: 26496502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike synchrony reveals emergence of proto-objects in visual cortex.
    Martin AB; von der Heydt R
    J Neurosci; 2015 Apr; 35(17):6860-70. PubMed ID: 25926461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects.
    Mihalas S; Dong Y; von der Heydt R; Niebur E
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7583-8. PubMed ID: 21502489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Figure-Ground Organization in Natural Scenes: Performance of a Recurrent Neural Model Compared with Neurons of Area V2.
    Hu B; von der Heydt R; Niebur E
    eNeuro; 2019; 6(3):. PubMed ID: 31167850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural model of figure-ground organization.
    Craft E; Schütze H; Niebur E; von der Heydt R
    J Neurophysiol; 2007 Jun; 97(6):4310-26. PubMed ID: 17442769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Columnar processing of border ownership in primate visual cortex.
    Franken TP; Reynolds JH
    Elife; 2021 Nov; 10():. PubMed ID: 34845986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention.
    Wagatsuma N; Hu B; von der Heydt R; Niebur E
    PLoS Comput Biol; 2021 Mar; 17(3):e1008829. PubMed ID: 33765007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping.
    Roelfsema PR; Lamme VA; Spekreijse H
    Nat Neurosci; 2004 Sep; 7(9):982-91. PubMed ID: 15322549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual saliency computations: mechanisms, constraints, and the effect of feedback.
    Soltani A; Koch C
    J Neurosci; 2010 Sep; 30(38):12831-43. PubMed ID: 20861387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent V1-V2 interaction in early visual boundary processing.
    Neumann H; Sepp W
    Biol Cybern; 1999 Nov; 81(5-6):425-44. PubMed ID: 10592018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical algorithms for perceptual grouping.
    Roelfsema PR
    Annu Rev Neurosci; 2006; 29():203-27. PubMed ID: 16776584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic Correlates of Low-Level Perception in V1.
    Gerard-Mercier F; Carelli PV; Pananceau M; Troncoso XG; Frégnac Y
    J Neurosci; 2016 Apr; 36(14):3925-42. PubMed ID: 27053201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Figure and ground: how the visual cortex integrates local cues for global organization.
    von der Heydt R; Zhang NR
    J Neurophysiol; 2018 Dec; 120(6):3085-3098. PubMed ID: 30044171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections.
    Sporns O; Tononi G; Edelman GM
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):129-33. PubMed ID: 1986358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical synchronization suggests neural principles of visual feature grouping.
    Eckhorn R
    Acta Neurobiol Exp (Wars); 2000; 60(2):261-9. PubMed ID: 10909183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding a face in the crowd: parallel and serial neural mechanisms of visual selection.
    Bichot NP; Desimone R
    Prog Brain Res; 2006; 155():147-56. PubMed ID: 17027386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of object-based attention.
    Cohen EH; Tong F
    Cereb Cortex; 2015 Apr; 25(4):1080-92. PubMed ID: 24217991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.