BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 28924728)

  • 1. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
    Kong B; Li Z; Yang Y; Liu Z; Yan D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of techniques for the extinction and prevention of coal fires produced in final walls as a result of spontaneous combustion in the Cerrejón mine-Colombia.
    Bustamante Rúa MO; Bustamante Baena P; Daza Aragón AJ
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32515-32523. PubMed ID: 30238260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A visual knowledge map analysis of mine fire research based on CiteSpace.
    Wang F; Tan B; Chen Y; Fang X; Jia G; Wang H; Cheng G; Shao Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77609-77624. PubMed ID: 35680744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.
    Ren XW; Wang FZ; Guo Q; Zuo ZB; Fang QS
    J Occup Environ Hyg; 2015; 12(11):D239-45. PubMed ID: 26259722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue.
    Liu C; Zhang R; Wang Z; Zhang X
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88548-88562. PubMed ID: 37436620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Status and Development Trend of Coal Spontaneous Combustion Fire and Prevention Technology in China: A Review.
    Liu Y; Wen H; Chen C; Guo J; Jin Y; Zheng X; Cheng X; Li D
    ACS Omega; 2024 May; 9(20):21727-21750. PubMed ID: 38799345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.
    Shi B; Ma L; Dong W; Zhou F
    J Occup Environ Hyg; 2015; 12(8):D168-77. PubMed ID: 25745879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study.
    Jia X; Wu J; Lian C; Rao J
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of paste backfill mining technology in Chinese coal mines.
    Chang Q; Chen J; Zhou H; Bai J
    ScientificWorldJournal; 2014; 2014():821025. PubMed ID: 25258737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of spontaneous coal combustion tendency using multinomial logistic regression.
    Kursunoglu N; Gogebakan M
    Int J Occup Saf Ergon; 2022 Dec; 28(4):2000-2009. PubMed ID: 34144657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion.
    Chan Z; Zhou B; Wang J; Lu Z; Yang Q; Dong Z; Dong K
    J Environ Radioact; 2023 Dec; 270():107284. PubMed ID: 37634424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf.
    Wang K; Tang H; Wang F; Miao Y; Liu D
    PLoS One; 2019; 14(3):e0213101. PubMed ID: 30822333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
    Lu X; Wang D; Qin B; Tian F; Shi G; Dong S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18363-71. PubMed ID: 26370817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous monitoring system of gob temperature and its application.
    Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the technology of detection and risk assessment of fire areas in gangue hills.
    Wang H; Tan B; Zhang X
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38776-38787. PubMed ID: 32632694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of opencast coal mine production: a case study in Yimin mining area in China.
    Zhang L; Wang J; Feng Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8475-8486. PubMed ID: 29307072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China.
    Shan B; Wang G; Cao F; Wu D; Liang W; Sun R
    Ecotoxicol Environ Saf; 2019 Oct; 182():109409. PubMed ID: 31288123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the application of coal spontaneous combustion positive pressure beam tube classification monitoring and early warning.
    Kong B; Niu S; Cao H; Lu W; Wen J; Yin J; Zhang W; Zhang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75735-75751. PubMed ID: 37222889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress and visualization of underground coal fire detection methods.
    Wang T; Wang H; Fang X; Wang G; Chen Y; Xu Z; Qi Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74671-74690. PubMed ID: 37233933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.