BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 28924728)

  • 41. Research on the Law of Coal Pillar Spontaneous Combustion and Fire Prevention and Control Technology.
    Liu Y; Qi X; Luo D; Zhang Y; Yin D
    ACS Omega; 2024 Apr; 9(17):18973-18983. PubMed ID: 38708250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development overview of paste backfill technology in China's coal mines: a review.
    Yang K; Zhao X; Wei Z; Zhang J
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):67957-67969. PubMed ID: 34637124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two-dimensional inverse problem of fire location in the closed goaf of coal mine based on optical fiber sensors.
    Liu Y; Chen L; Wang K; Liu Z; Zhang Y; Shi L; Gao K; Yang Z
    PLoS One; 2024; 19(2):e0298329. PubMed ID: 38412183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Lead emission amount from coal combustion and its environment effect in Xi'an City].
    Luo K; Wang D; Tan J; Wang L; Feng F; Li R
    Huan Jing Ke Xue; 2002 Jan; 23(1):123-5. PubMed ID: 11987396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf.
    Hu D; Li Z
    PLoS One; 2022; 17(5):e0267631. PubMed ID: 35622814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face.
    Qi Y; Wang W; Qi Q; Ning Z; Yao Y
    PLoS One; 2021; 16(9):e0256911. PubMed ID: 34543303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.
    Wang S; Luo K; Wang X; Sun Y
    Environ Pollut; 2016 Feb; 209():107-13. PubMed ID: 26650082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.
    Qin B; Ma D; Li F; Li Y
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24657-24665. PubMed ID: 28913598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion.
    Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health.
    Oliveira MLS; da Boit K; Pacheco F; Teixeira EC; Schneider IL; Crissien TJ; Pinto DC; Oyaga RM; Silva LFO
    Environ Res; 2018 Jan; 160():562-567. PubMed ID: 29173343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Research on Ecological Effect Assessment Method of Ecological Restoration of Open-Pit Coal Mines in Alpine Regions.
    Yuan M; Ouyang J; Zheng S; Tian Y; Sun R; Bao R; Li T; Yu T; Li S; Wu D; Liu Y; Xu C; Zhu Y
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early detection of open fires and spontaneous combustion in mines.
    Hornsby CD; Makower AD
    Rev Inst Hyg Mines (Hasselt); 1983; 38(2):147-53. PubMed ID: 6414069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variance Analysis in China's Coal Mine Accident Studies Based on Data Mining.
    Zhou T; Zhu Y; Sun K; Chen J; Wang S; Zhu H; Wang X
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].
    Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N
    Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Research on coal mining intensity based on the DPSIR-SPA model.
    Wang J; Huang Y; Li J; Yao A; Zhai Z
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18549-18565. PubMed ID: 38345688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of eco-environmental quality for the coal-mining region using multi-source data.
    Jiang H; Fan G; Zhang D; Zhang S; Fan Y
    Sci Rep; 2022 Apr; 12(1):6623. PubMed ID: 35459255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ignition control and waste heat assessment of spontaneous combustion gangue hill by gravity heat pipe group: a case study in Shanxi Province, China.
    Zhou X; Guo L; Zhang Y; Chang K
    Environ Sci Pollut Res Int; 2023 May; 30(21):59262-59281. PubMed ID: 37002524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis.
    Deng J; Ge S; Qi H; Zhou F; Shi B
    Sci Total Environ; 2021 Jul; 777():146080. PubMed ID: 33677308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for evaluating the coal spontaneous combustion index by the coefficient of variation and Kruskal-Wallis test: a case study.
    Wang K; Li Y; Zhai X; Bai G
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58956-58966. PubMed ID: 37002521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.