These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 28924815)
1. Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson's Natural Language Processing Algorithm. Trivedi H; Mesterhazy J; Laguna B; Vu T; Sohn JH J Digit Imaging; 2018 Apr; 31(2):245-251. PubMed ID: 28924815 [TBL] [Abstract][Full Text] [Related]
2. Efficiency Improvement in a Busy Radiology Practice: Determination of Musculoskeletal Magnetic Resonance Imaging Protocol Using Deep-Learning Convolutional Neural Networks. Lee YH J Digit Imaging; 2018 Oct; 31(5):604-610. PubMed ID: 29619578 [TBL] [Abstract][Full Text] [Related]
3. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization. Brown AD; Marotta TR Acad Radiol; 2017 Feb; 24(2):160-166. PubMed ID: 27889399 [TBL] [Abstract][Full Text] [Related]
4. Large Scale Semi-Automated Labeling of Routine Free-Text Clinical Records for Deep Learning. Trivedi HM; Panahiazar M; Liang A; Lituiev D; Chang P; Sohn JH; Chen YY; Franc BL; Joe B; Hadley D J Digit Imaging; 2019 Feb; 32(1):30-37. PubMed ID: 30128778 [TBL] [Abstract][Full Text] [Related]
5. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning for Automation of Radiology Protocols for Quality and Efficiency Improvement. Kalra A; Chakraborty A; Fine B; Reicher J J Am Coll Radiol; 2020 Sep; 17(9):1149-1158. PubMed ID: 32278847 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke. Kim C; Zhu V; Obeid J; Lenert L PLoS One; 2019; 14(2):e0212778. PubMed ID: 30818342 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges, and Trends. Hirschmann A; Cyriac J; Stieltjes B; Kober T; Richiardi J; Omoumi P Semin Musculoskelet Radiol; 2019 Jun; 23(3):304-311. PubMed ID: 31163504 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing for Imaging Protocol Assignment: Machine Learning for Multiclass Classification of Abdominal CT Protocols Using Indication Text Data. Xavier BA; Chen PH J Digit Imaging; 2022 Oct; 35(5):1120-1130. PubMed ID: 35654878 [TBL] [Abstract][Full Text] [Related]
11. Development and web deployment of an automated neuroradiology MRI protocoling tool with natural language processing. Chillakuru YR; Munjal S; Laguna B; Chen TL; Chaudhari GR; Vu T; Seo Y; Narvid J; Sohn JH BMC Med Inform Decis Mak; 2021 Jul; 21(1):213. PubMed ID: 34253196 [TBL] [Abstract][Full Text] [Related]
12. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557 [TBL] [Abstract][Full Text] [Related]
13. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report. Gorelik N; Gyftopoulos S Can Assoc Radiol J; 2021 Feb; 72(1):45-59. PubMed ID: 32809857 [TBL] [Abstract][Full Text] [Related]
14. Improving Quantitative Magnetic Resonance Imaging Using Deep Learning. Liu F Semin Musculoskelet Radiol; 2020 Aug; 24(4):451-459. PubMed ID: 32992372 [TBL] [Abstract][Full Text] [Related]
16. Current applications and future directions of deep learning in musculoskeletal radiology. Chea P; Mandell JC Skeletal Radiol; 2020 Feb; 49(2):183-197. PubMed ID: 31377836 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Stroke Outcome Using Natural Language Processing-Based Machine Learning of Radiology Report of Brain MRI. Heo TS; Kim YS; Choi JM; Jeong YS; Seo SY; Lee JH; Jeon JP; Kim C J Pers Med; 2020 Dec; 10(4):. PubMed ID: 33339385 [TBL] [Abstract][Full Text] [Related]
18. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
19. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212 [TBL] [Abstract][Full Text] [Related]
20. Implementation of an Institution-Wide Rules-Based Automated CT Protocoling System. Chung R; Demers JP; Tiberio R; Savage CA; McNulty F; Stout M; Kambadakone A; Gilman MD; Sharma A; Alkasab TK AJR Am J Roentgenol; 2024 Apr; 222(4):e2329806. PubMed ID: 38230904 [No Abstract] [Full Text] [Related] [Next] [New Search]