These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28925530)
1. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Pourjaberi SNS; Terahara N; Namba K; Minamino T Mol Microbiol; 2017 Nov; 106(4):646-658. PubMed ID: 28925530 [TBL] [Abstract][Full Text] [Related]
2. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499 [TBL] [Abstract][Full Text] [Related]
3. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987 [TBL] [Abstract][Full Text] [Related]
4. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella. Nakamura S; Morimoto YV; Kami-ike N; Minamino T; Namba K J Mol Biol; 2009 Oct; 393(2):300-7. PubMed ID: 19683537 [TBL] [Abstract][Full Text] [Related]
5. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Castillo DJ; Nakamura S; Morimoto YV; Che YS; Kami-Ike N; Kudo S; Minamino T; Namba K Biophysics (Nagoya-shi); 2013; 9():173-81. PubMed ID: 27493556 [TBL] [Abstract][Full Text] [Related]
6. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Morimoto YV; Namba K; Minamino T Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32872412 [TBL] [Abstract][Full Text] [Related]
7. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496 [TBL] [Abstract][Full Text] [Related]
8. Mutational analysis of charged residues in the cytoplasmic loops of MotA and MotP in the Bacillus subtilis flagellar motor. Takahashi Y; Ito M J Biochem; 2014 Oct; 156(4):211-20. PubMed ID: 24771657 [TBL] [Abstract][Full Text] [Related]
9. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Che YS; Nakamura S; Morimoto YV; Kami-Ike N; Namba K; Minamino T Mol Microbiol; 2014 Jan; 91(1):175-84. PubMed ID: 24255940 [TBL] [Abstract][Full Text] [Related]
10. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of the bi-directional bacterial flagellarĀ motor. Morimoto YV; Minamino T Biomolecules; 2014 Feb; 4(1):217-34. PubMed ID: 24970213 [TBL] [Abstract][Full Text] [Related]
12. Conformational change in the stator of the bacterial flagellar motor. Kojima S; Blair DF Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642 [TBL] [Abstract][Full Text] [Related]
13. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029 [TBL] [Abstract][Full Text] [Related]
14. A Chaperone for the Stator Units of a Bacterial Flagellum. Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR mBio; 2019 Aug; 10(4):. PubMed ID: 31387912 [TBL] [Abstract][Full Text] [Related]
15. Motility protein interactions in the bacterial flagellar motor. Garza AG; Harris-Haller LW; Stoebner RA; Manson MD Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209 [TBL] [Abstract][Full Text] [Related]
16. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Lloyd SA; Whitby FG; Blair DF; Hill CP Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379 [TBL] [Abstract][Full Text] [Related]
17. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Takekawa N; Terahara N; Kato T; Gohara M; Mayanagi K; Hijikata A; Onoue Y; Kojima S; Shirai T; Namba K; Homma M Sci Rep; 2016 Aug; 6():31526. PubMed ID: 27531865 [TBL] [Abstract][Full Text] [Related]
18. MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Subramanian S; Gao X; Dann CE; Kearns DB Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13537-13542. PubMed ID: 29196522 [TBL] [Abstract][Full Text] [Related]
19. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation. Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617 [TBL] [Abstract][Full Text] [Related]
20. Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella. Morimoto YV; Che YS; Minamino T; Namba K FEBS Lett; 2010 Mar; 584(6):1268-72. PubMed ID: 20178785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]