BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 28925794)

  • 41. Spray dried human and chimpanzee adenoviral-vectored vaccines are thermally stable and immunogenic in vivo.
    Afkhami S; LeClair DA; Haddadi S; Lai R; Toniolo SP; Ertl HC; Cranston ED; Thompson MR; Xing Z
    Vaccine; 2017 May; 35(22):2916-2924. PubMed ID: 28438408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of thermal and shear stresses in the spray drying process on the stability of siRNA dry powders.
    Wu J; Wu L; Wan F; Rantanen J; Cun D; Yang M
    Int J Pharm; 2019 Jul; 566():32-39. PubMed ID: 31077763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preservation of the immunogenicity of dry-powder influenza H5N1 whole inactivated virus vaccine at elevated storage temperatures.
    Geeraedts F; Saluja V; ter Veer W; Amorij JP; Frijlink HW; Wilschut J; Hinrichs WL; Huckriede A
    AAPS J; 2010 Jun; 12(2):215-22. PubMed ID: 20195930
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.
    Huyge K; Van Reeth K; De Beer T; Landman WJ; van Eck JH; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Apr; 80(3):649-56. PubMed ID: 22155763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution.
    Li X; Thakkar SG; Ruwona TB; Williams RO; Cui Z
    J Control Release; 2015 Apr; 204():38-50. PubMed ID: 25735896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stabilization of HSV-2 viral vaccine candidate by spray drying.
    LeClair DA; Li L; Rahman N; Cranston ED; Xing Z; Thompson MR
    Int J Pharm; 2019 Oct; 569():118615. PubMed ID: 31415872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.
    Tewa-Tagne P; Degobert G; Briançon S; Bordes C; Gauvrit JY; Lanteri P; Fessi H
    Pharm Res; 2007 Apr; 24(4):650-61. PubMed ID: 17318421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacteriophage Encapsulation Using Spray Drying for Phage Therapy.
    Malik DJ
    Curr Issues Mol Biol; 2021; 40():303-316. PubMed ID: 32678066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of Spray Drying Conditions for Yield, Particle Size and Biological Activity of Thermally Stable Viral Vectors.
    LeClair DA; Cranston ED; Xing Z; Thompson MR
    Pharm Res; 2016 Nov; 33(11):2763-76. PubMed ID: 27450412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formulation and performance of danazol nano-crystalline suspensions and spray dried powders.
    Kumar S; Jog R; Shen J; Zolnik B; Sadrieh N; Burgess DJ
    Pharm Res; 2015 May; 32(5):1694-703. PubMed ID: 25385690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa.
    Nguyen XC; Herberger JD; Burke PA
    Pharm Res; 2004 Mar; 21(3):507-14. PubMed ID: 15070103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spray Drying and Particle Engineering in Dosage Form Design for Global Vaccines.
    Gomez M; Vehring R
    J Aerosol Med Pulm Drug Deliv; 2022 Jun; 35(3):121-138. PubMed ID: 35172104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of operating and formulation variables on the morphology of spray-dried protein particles.
    Maa YF; Costantino HR; Nguyen PA; Hsu CC
    Pharm Dev Technol; 1997 Aug; 2(3):213-23. PubMed ID: 9552449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stabilization of IgG1 in spray-dried powders for inhalation.
    Schüle S; Schulz-Fademrecht T; Garidel P; Bechtold-Peters K; Frieb W
    Eur J Pharm Biopharm; 2008 Aug; 69(3):793-807. PubMed ID: 18477504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redispersible spray-dried lipid-core nanocapsules intended for oral delivery: the influence of the particle number on redispersibility.
    Andrade DF; Vukosavljevic B; Benvenutti EV; Pohlmann AR; Guterres SS; Windbergs M; Beck RCR
    Pharm Dev Technol; 2018 Apr; 23(4):414-425. PubMed ID: 29095657
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation and solidification of redispersible nanosuspensions.
    Zhang X; Guan J; Ni R; Li LC; Mao S
    J Pharm Sci; 2014 Jul; 103(7):2166-2176. PubMed ID: 24840928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization.
    Audouy SA; van der Schaaf G; Hinrichs WL; Frijlink HW; Wilschut J; Huckriede A
    Vaccine; 2011 Jun; 29(26):4345-52. PubMed ID: 21514345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of directly compressible powders via co-spray drying.
    Gonnissen Y; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2007 Aug; 67(1):220-6. PubMed ID: 17317123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation.
    Yu H; Teo J; Chew JW; Hadinoto K
    Int J Pharm; 2016 Feb; 499(1-2):38-46. PubMed ID: 26757148
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.
    Grohganz H; Lee YY; Rantanen J; Yang M
    Int J Pharm; 2013 Apr; 447(1-2):224-30. PubMed ID: 23500620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.