These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28925815)

  • 1. Examining the Spatiotemporal Disruption to Gaze When Using a Myoelectric Prosthetic Hand.
    Parr JVV; Vine SJ; Harrison NR; Wood G
    J Mot Behav; 2018; 50(4):416-425. PubMed ID: 28925815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training.
    Parr JVV; Vine SJ; Wilson MR; Harrison NR; Wood G
    J Neuroeng Rehabil; 2019 Apr; 16(1):52. PubMed ID: 31029174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Coupling of Hand and Eye Movements When Using a Myoelectric Prosthetic Hand.
    Cheng KY; Chapman CS; Hebert JS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Grip Uncertainty During Initial Prosthetic Hand Use Improves Eye-Hand Coordination and Lowers Mental Workload.
    Mohamed MO; Wood G; Wright DJ; Parr JVV
    J Mot Behav; 2024; 56(4):475-485. PubMed ID: 38522858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics.
    Cognolato M; Gijsberts A; Gregori V; Saetta G; Giacomino K; Hager AM; Gigli A; Faccio D; Tiengo C; Bassetto F; Caputo B; Brugger P; Atzori M; Müller H
    Sci Data; 2020 Feb; 7(1):43. PubMed ID: 32041965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using eye tracking to assess learning of a multifunction prosthetic hand: an exploratory study from a rehabilitation perspective.
    Hill W; Lindner H
    J Neuroeng Rehabil; 2024 Aug; 21(1):148. PubMed ID: 39217378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand.
    Raveh E; Friedman J; Portnoy S
    Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implicit development of gaze strategies support motor improvements during action encoding training of prosthesis use.
    Bayani KY; Lawson RR; Levinson L; Mitchell S; Atawala N; Otwell M; Rickerson B; Wheaton LA
    Neuropsychologia; 2019 Apr; 127():75-83. PubMed ID: 30807755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myoelectric control with abstract decoders.
    Dyson M; Barnes J; Nazarpour K
    J Neural Eng; 2018 Oct; 15(5):056003. PubMed ID: 29893720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye-hand re-coordination: A pilot investigation of gaze and reach biofeedback in chronic stroke.
    Rizzo JR; Beheshti M; Shafieesabet A; Fung J; Hosseini M; Rucker JC; Snyder LH; Hudson TE
    Prog Brain Res; 2019; 249():361-374. PubMed ID: 31325995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redirection of gaze and switching of attention during rapid stepping reactions evoked by unpredictable postural perturbation.
    Zettel JL; Holbeche A; McIlroy WE; Maki BE
    Exp Brain Res; 2005 Sep; 165(3):392-401. PubMed ID: 15883802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-Limb Transfer of Grasp Force Perception With Closed-Loop Hand Prosthesis.
    Fu Q; Shao F; Santello M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):927-936. PubMed ID: 31021799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study.
    Wilson MR; Vine SJ; Bright E; Masters RS; Defriend D; McGrath JS
    Surg Endosc; 2011 Dec; 25(12):3731-9. PubMed ID: 21671125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of common and separate eye and hand accumulators underlying flexible eye-hand coordination.
    Jana S; Gopal A; Murthy A
    J Neurophysiol; 2017 Jan; 117(1):348-364. PubMed ID: 27784809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand-Eye Coordination Predicts Joint Attention.
    Yu C; Smith LB
    Child Dev; 2017 Nov; 88(6):2060-2078. PubMed ID: 28186339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye-hand coordination during learning of a novel visuomotor task.
    Sailer U; Flanagan JR; Johansson RS
    J Neurosci; 2005 Sep; 25(39):8833-42. PubMed ID: 16192373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How active gaze informs the hand in sequential pointing movements.
    Wilmut K; Wann JP; Brown JH
    Exp Brain Res; 2006 Nov; 175(4):654-66. PubMed ID: 16794847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.