BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28925864)

  • 1. Kinetic Characterization of Anticarsia gemmatalis Digestive Serine- Proteases and the Inhibitory Effect of Synthetic Peptides.
    Patarroyo-Vargas AM; Merino-Cabrera YB; Zanuncio JC; Rocha F; Campos WG; de Almeida Oliveira MG
    Protein Pept Lett; 2017; 24(11):1040-1047. PubMed ID: 28925864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis.
    Oliveira MG; De Simone SG; Xavier LP; Guedes RN
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):369-80. PubMed ID: 15694584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition kinetics of digestive proteases for Anticarsia gemmatalis.
    Patarroyo-Vargas AM; Cordeiro G; Silva CRD; Silva CRD; Mendonça EG; Visôtto LE; Zanuncio JC; Campos WG; Oliveira MGA
    An Acad Bras Cienc; 2020; 92 Suppl 1():e20180477. PubMed ID: 32491140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small peptides inhibit gut trypsin-like proteases and impair Anticarsia gemmatalis (Lepidoptera: Noctuidae) survival and development.
    de Almeida Barros R; Meriño-Cabrera Y; Vital CE; da Silva Júnior NR; de Oliveira CN; Lessa Barbosa S; Marques Gonçalves Assis JV; Ramos HJ; de Almeida Oliveira MG
    Pest Manag Sci; 2021 Apr; 77(4):1714-1723. PubMed ID: 33200876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition constant and stability of tripeptide inhibitors of gut trypsin-like enzyme of the soybean pest Anticarsia gemmatalis.
    de Almeida Barros R; Meriño-Cabrera Y; Severiche Castro JG; Rodrigues da Silva Júnior N; Schultz H; de Andrade RJ; Aguilar de Oliveira JV; de Oliveira Ramos HJ; de Almeida Oliveira MG
    Arch Insect Biochem Physiol; 2022 Jun; 110(2):e21887. PubMed ID: 35315942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity and reactive loop length requirements for crmA inhibition of serine proteases.
    Tesch LD; Raghavendra MP; Bedsted-Faarvang T; Gettins PG; Olson ST
    Protein Sci; 2005 Feb; 14(2):533-42. PubMed ID: 15632287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal proteolytic profile changes during larval development of Anticarsia gemmatalis caterpillars.
    da Silva Júnior NR; Vital CE; de Almeida Barros R; Faustino VA; Monteiro LP; Barros E; de Oliveira EE; de Oliveira Ramos HJ; de Almeida Oliveira MG
    Arch Insect Biochem Physiol; 2020 Jan; 103(1):e21631. PubMed ID: 31587381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis.
    Pilon FM; Visôtto LE; Guedes RN; Oliveira MG
    J Comp Physiol B; 2013 Aug; 183(6):735-47. PubMed ID: 23392900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera.
    Saikhedkar NS; Joshi RS; Bhoite AS; Mohandasan R; Yadav AK; Fernandes M; Kulkarni KA; Giri AP
    Insect Biochem Mol Biol; 2018 Apr; 95():17-25. PubMed ID: 29486250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of trypsin produced by gut bacteria from Anticarsia gemmatalis.
    Pilon FM; Silva CDR; Visôtto LE; Barros RA; da Silva Júnior NR; Campos WG; de Almeida Oliveira MG
    Arch Insect Biochem Physiol; 2017 Oct; 96(2):. PubMed ID: 28762531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel proteinase inhibitor from the hemolymph of soybean pest Anticarsia gemmatalis (lepidóptera: Noctuidae): Structural modeling and enzymatic kinetic.
    Rios-Díez JD; Meriño-Cabrera Y; Silva-Junior NR; de Almeida Barros R; Aguilar de Oliveira J; Josué de Oliveira Ramos H; Goreti de Almeida Oliveira M
    Arch Insect Biochem Physiol; 2022 Mar; 109(3):e21864. PubMed ID: 34982841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae).
    Pereira ME; Dörr FA; Peixoto NC; Lima-Garcia JF; Dörr F; Brito GG
    Braz J Med Biol Res; 2005 Nov; 38(11):1633-41. PubMed ID: 16258632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bovine pancreatic trypsin inhibitor and soybean Kunitz trypsin inhibitor: Differential effects on proteases and larval development of the soybean pest Anticarsia gemmatalis (Lepidoptera: Noctuidae).
    de Almeida Barros R; Meriño-Cabrera Y; Castro JS; da Silva Junior NR; de Oliveira JVA; Schultz H; de Andrade RJ; de Oliveira Ramos HJ; de Almeida Oliveira MG
    Pestic Biochem Physiol; 2022 Oct; 187():105188. PubMed ID: 36127063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the contribution of active site and exosite interactions to affinity and specificity of peptidylic serine protease inhibitors using non-natural arginine analogs.
    Hosseini M; Jiang L; Sørensen HP; Jensen JK; Christensen A; Fogh S; Yuan C; Andersen LM; Huang M; Andreasen PA; Jensen KJ
    Mol Pharmacol; 2011 Oct; 80(4):585-97. PubMed ID: 21719463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors.
    Ribeiro C; Togawa RC; Neshich IA; Mazoni I; Mancini AL; Minardi RC; da Silveira CH; Jardine JG; Santoro MM; Neshich G
    BMC Struct Biol; 2010 Oct; 10():36. PubMed ID: 20961427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationship of serine protease-protein inhibitor interaction.
    Otlewski J; Jaskólski M; Buczek O; Cierpicki T; Czapińska H; Krowarsch D; Smalas AO; Stachowiak D; Szpineta A; Dadlez M
    Acta Biochim Pol; 2001; 48(2):419-28. PubMed ID: 11732612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine-containing dipeptides decrease affinity of gut trypsins and compromise soybean pest development.
    Meriño-Cabrera Y; Castro JS; de Almeida Barros R; da Silva Junior NR; de Oliveira Ramos H; de Almeida Oliveira MG
    Pestic Biochem Physiol; 2022 Jun; 184():105107. PubMed ID: 35715046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.
    Macedo ML; Freire Md; Kubo CE; Parra JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jan; 153(1):24-33. PubMed ID: 20692365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the structures of the cyclotheonamide A complexes of human alpha-thrombin and bovine beta-trypsin.
    Ganesh V; Lee AY; Clardy J; Tulinsky A
    Protein Sci; 1996 May; 5(5):825-35. PubMed ID: 8732754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.