These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28926202)

  • 21. Dominant optic atrophy: correlation between clinical and molecular genetic studies.
    Puomila A; Huoponen K; Mäntyjärvi M; Hämäläinen P; Paananen R; Sankila EM; Savontaus ML; Somer M; Nikoskelainen E
    Acta Ophthalmol Scand; 2005 Jun; 83(3):337-46. PubMed ID: 15948788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pattern of Retinal Ganglion Cell Loss in OPA1-Related Autosomal Dominant Optic Atrophy Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses.
    Majander A; João C; Rider AT; Henning GB; Votruba M; Moore AT; Yu-Wai-Man P; Stockman A
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):502-516. PubMed ID: 28125838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autosomal dominant optic atrophy with
    Maeda-Katahira A; Nakamura N; Hayashi T; Katagiri S; Shimizu S; Ohde H; Matsunaga T; Kaga K; Nakano T; Kameya S; Matsuura T; Fujinami K; Iwata T; Tsunoda K
    Mol Vis; 2019; 25():559-573. PubMed ID: 31673222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease.
    Delettre C; Lenaers G; Pelloquin L; Belenguer P; Hamel CP
    Mol Genet Metab; 2002 Feb; 75(2):97-107. PubMed ID: 11855928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributed abnormalities of brain white matter architecture in patients with dominant optic atrophy and OPA1 mutations.
    Rocca MA; Bianchi-Marzoli S; Messina R; Cascavilla ML; Zeviani M; Lamperti C; Milesi J; Carta A; Cammarata G; Leocani L; Lamantea E; Bandello F; Comi G; Falini A; Filippi M
    J Neurol; 2015 May; 262(5):1216-27. PubMed ID: 25794858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects.
    Rönnbäck C; Grønskov K; Larsen M
    Acta Ophthalmol; 2014 Nov; 92(7):670-4. PubMed ID: 24612963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy.
    Rönnbäck C; Nissen C; Almind GJ; Grønskov K; Milea D; Larsen M
    Acta Ophthalmol; 2015 Dec; 93(8):762-6. PubMed ID: 26385429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Secondary mtDNA defects do not cause optic nerve dysfunction in a mouse model of dominant optic atrophy.
    Yu-Wai-Man P; Davies VJ; Piechota MJ; Cree LM; Votruba M; Chinnery PF
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4561-6. PubMed ID: 19443720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First submicroscopic inversion of the OPA1 gene identified in dominant optic atrophy - a case report.
    Weisschuh N; Mazzola P; Heinrich T; Haack T; Wissinger B; Tonagel F; Kelbsch C
    BMC Med Genet; 2020 Nov; 21(1):236. PubMed ID: 33243194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy.
    Heiduschka P; Schnichels S; Fuhrmann N; Hofmeister S; Schraermeyer U; Wissinger B; Alavi MV
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1424-31. PubMed ID: 19834041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dominant optic atrophy: Culprit mitochondria in the optic nerve.
    Lenaers G; Neutzner A; Le Dantec Y; Jüschke C; Xiao T; Decembrini S; Swirski S; Kieninger S; Agca C; Kim US; Reynier P; Yu-Wai-Man P; Neidhardt J; Wissinger B
    Prog Retin Eye Res; 2021 Jul; 83():100935. PubMed ID: 33340656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells' Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration.
    Barbano L; Ziccardi L; Antonelli G; Nicoletti CG; Landi D; Mataluni G; Falsini B; Marfia GA; Centonze D; Parisi V
    Diagnostics (Basel); 2022 May; 12(5):. PubMed ID: 35626311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse models of dominant optic atrophy: what do they tell us about the pathophysiology of visual loss?
    Williams PA; Morgan JE; Votruba M
    Vision Res; 2011 Jan; 51(2):229-34. PubMed ID: 20801145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling autosomal dominant optic atrophy associated with OPA1 variants in iPSC-derived retinal ganglion cells.
    Sladen PE; Jovanovic K; Guarascio R; Ottaviani D; Salsbury G; Novoselova T; Chapple JP; Yu-Wai-Man P; Cheetham ME
    Hum Mol Genet; 2022 Oct; 31(20):3478-3493. PubMed ID: 35652445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy.
    Williams PA; Morgan JE; Votruba M
    Brain; 2010 Oct; 133(10):2942-51. PubMed ID: 20817698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reduction of temporal optic nerve head microcirculation in autosomal dominant optic atrophy.
    Inoue M; Himori N; Kunikata H; Takeshita T; Aizawa N; Shiga Y; Omodaka K; Nishiguchi KM; Takahashi H; Nakazawa T
    Acta Ophthalmol; 2016 Nov; 94(7):e580-e585. PubMed ID: 26936288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dominant optic atrophy caused by a novel OPA1 splice site mutation (IVS20+1G-->A) associated with intron retention.
    Hayashi T; Gekka T; Omoto S; Takeuchi T; Kitahara K
    Ophthalmic Res; 2005; 37(4):214-24. PubMed ID: 16006781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifocal electroretinography in subjects with age-related macular degeneration.
    Yavas GF; Küsbeci T; Inan UU
    Doc Ophthalmol; 2014 Dec; 129(3):167-75. PubMed ID: 25253559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect.
    Thiselton DL; Alexander C; Morris A; Brooks S; Rosenberg T; Eiberg H; Kjer B; Kjer P; Bhattacharya SS; Votruba M
    Hum Genet; 2001 Nov; 109(5):498-502. PubMed ID: 11735024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Pattern of Retinal Ganglion Cell Loss in Wolfram Syndrome is Distinct From Mitochondrial Optic Neuropathies.
    Barboni P; Amore G; Cascavilla ML; Battista M; Frontino G; Romagnoli M; Caporali L; Baldoli C; Gramegna LL; Sessagesimi E; Bonfanti R; Romagnoli A; Scotti R; Brambati M; Carbonelli M; Starace V; Fiorini C; Panebianco R; Parisi V; Tonon C; Bandello F; Carelli V; La Morgia C
    Am J Ophthalmol; 2022 Sep; 241():206-216. PubMed ID: 35452662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.