BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2892626)

  • 21. Sodium D-glucose cotransport in the gill of marine mussels: studies with intact tissue and brush-border membrane vesicles.
    Pajor AM; Moon DA; Wright SH
    J Membr Biol; 1989 Jan; 107(1):77-88. PubMed ID: 2921769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and properties of brush-border membrane vesicles from human small intestine.
    Shirazi-Beechey SP; Davies AG; Tebbutt K; Dyer J; Ellis A; Taylor CJ; Fairclough P; Beechey RB
    Gastroenterology; 1990 Mar; 98(3):676-85. PubMed ID: 2298371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of amino-acid transport systems in guinea-pig intestinal brush-border membrane.
    Satoh O; Kudo Y; Shikata H; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1989 Oct; 985(2):120-6. PubMed ID: 2804099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Betaine transport in rabbit renal brush-border membrane vesicles.
    Wunz TM; Wright SH
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F948-55. PubMed ID: 8322897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles.
    Friedrich M; Murer H; Berger EG
    Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc inhibition of glucose uptake in brush border membrane vesicles from pig small intestine.
    Watkins DW; Chenu C; Ripoche P
    Pflugers Arch; 1989 Nov; 415(2):165-71. PubMed ID: 2594473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regression of high-affinity carrier-mediated intestinal transport of taurine in adult cats.
    Wolffram S; Hagemann C; Scharrer E
    Am J Physiol; 1991 Nov; 261(5 Pt 2):R1089-95. PubMed ID: 1659232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of different membrane isolation and purification techniques on D-glucose transport into rat brush-border membrane vesicles.
    Johnston GA; Freeman HJ
    Can J Physiol Pharmacol; 1988 Nov; 66(11):1355-60. PubMed ID: 3242773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of D-glucose transport across the intestinal brush-border membrane of the cat.
    Wolffram S; Eggenberger E; Scharrer E
    Comp Biochem Physiol A Comp Physiol; 1989; 94(1):111-5. PubMed ID: 2571446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system.
    Okano T; Inui K; Takano M; Hori R
    Biochem Pharmacol; 1986 Jun; 35(11):1781-6. PubMed ID: 3718527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems.
    Kessler M; Acuto O; Storelli C; Murer H; Müller M; Semenza G
    Biochim Biophys Acta; 1978 Jan; 506(1):136-54. PubMed ID: 620021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in amino acid and glucose transport in brush-border membrane vesicles of hyperglycemic guinea-pig small intestine.
    Satoh O; Koyama S; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1991 Mar; 1063(1):155-61. PubMed ID: 1826612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation.
    Evers C; Haase W; Murer H; Kinne R
    Membr Biochem; 1978; 1(3-4):203-19. PubMed ID: 756488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the transport of tri- and dicarboxylates by pig intestinal brush-border membrane vesicles.
    Wolffram S; Hagemann C; Grenacher B; Scharrer E
    Comp Biochem Physiol Comp Physiol; 1992 Apr; 101(4):759-67. PubMed ID: 1351451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of a potential-sensitive cyanine dye to rat small intestinal brush border membrane vesicles.
    Stieger B; Burckhardt G; Murer H
    Biochim Biophys Acta; 1983 Jul; 732(1):324-6. PubMed ID: 6871200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport studies with renal proximal tubular and small intestinal brush border and basolateral membrane vesicles: vesicle heterogeneity, coexistence of transport system.
    Murer H; Gmaj P; Steiger B; Hagenbuch B
    Methods Enzymol; 1989; 172():346-64. PubMed ID: 2747534
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleosides are efficiently absorbed by Na(+)-dependent transport across the intestinal brush border membrane in veal calves.
    Theisinger A; Grenacher B; Rech KS; Scharrer E
    J Dairy Sci; 2002 Sep; 85(9):2308-14. PubMed ID: 12362464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine.
    Brandis M; Harmeyer J; Kaune R; Mohrmann M; Murer H; Zimolo Z
    J Physiol; 1987 Mar; 384():479-90. PubMed ID: 2821238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.