BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28926278)

  • 21. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law.
    Ng XW; Bag N; Wohland T
    Chimia (Aarau); 2015; 69(3):112-9. PubMed ID: 26507213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS.
    Schneider F; Waithe D; Clausen MP; Galiani S; Koller T; Ozhan G; Eggeling C; Sezgin E
    Mol Biol Cell; 2017 Jun; 28(11):1507-1518. PubMed ID: 28404749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband Plasmonic Nanoantennas for Multi-Color Nanoscale Dynamics in Living Cells.
    Sanz-Paz M; van Zanten TS; Manzo C; Mivelle M; Garcia-Parajo MF
    Small; 2023 Jul; 19(28):e2207977. PubMed ID: 36999791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs.
    Kinoshita M; Suzuki KG; Matsumori N; Takada M; Ano H; Morigaki K; Abe M; Makino A; Kobayashi T; Hirosawa KM; Fujiwara TK; Kusumi A; Murata M
    J Cell Biol; 2017 Apr; 216(4):1183-1204. PubMed ID: 28330937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization.
    Wenger J; Conchonaud F; Dintinger J; Wawrezinieck L; Ebbesen TW; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2007 Feb; 92(3):913-9. PubMed ID: 17085499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol.
    Chai YJ; Cheng CY; Liao YH; Lin CH; Hsieh CL
    Biophys J; 2022 Aug; 121(16):3146-3161. PubMed ID: 35841144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actively maintained lipid nanodomains in biomembranes.
    Gómez J; Sagués F; Reigada R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021907. PubMed ID: 18352051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation.
    Lasserre R; Guo XJ; Conchonaud F; Hamon Y; Hawchar O; Bernard AM; Soudja SM; Lenne PF; Rigneault H; Olive D; Bismuth G; Nunès JA; Payrastre B; Marguet D; He HT
    Nat Chem Biol; 2008 Sep; 4(9):538-47. PubMed ID: 18641634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
    Vicidomini G; Ta H; Honigmann A; Mueller V; Clausen MP; Waithe D; Galiani S; Sezgin E; Diaspro A; Hell SW; Eggeling C
    Nano Lett; 2015 Sep; 15(9):5912-8. PubMed ID: 26235350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative microscopy: protein dynamics and membrane organisation.
    Owen DM; Williamson D; Rentero C; Gaus K
    Traffic; 2009 Aug; 10(8):962-71. PubMed ID: 19416480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic force microscopy imaging of lipid rafts of human breast cancer cells.
    Orsini F; Cremona A; Arosio P; Corsetto PA; Montorfano G; Lascialfari A; Rizzo AM
    Biochim Biophys Acta; 2012 Dec; 1818(12):2943-9. PubMed ID: 22884468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts.
    Van der Luit AH; Budde M; Zerp S; Caan W; Klarenbeek JB; Verheij M; Van Blitterswijk WJ
    Biochem J; 2007 Jan; 401(2):541-9. PubMed ID: 17049047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells.
    van Gestel RA; Brouwers JF; Ultee A; Helms JB; Gadella BM
    Cell Tissue Res; 2016 Jan; 363(1):129-145. PubMed ID: 26378009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells.
    Honigmann A; Mueller V; Ta H; Schoenle A; Sezgin E; Hell SW; Eggeling C
    Nat Commun; 2014 Nov; 5():5412. PubMed ID: 25410140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.