These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28926622)

  • 41. [Ischemic axonal injury and its recovery after focal cerebral ischemia].
    Taguohi J; Yamada K; Hayakawa T; Katoka K; Komura E; Nakao K; Matsumoto K; Mogami H; Kanai N
    No To Shinkei; 1989 Aug; 41(8):813-8. PubMed ID: 2679826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Axonal injury and regeneration in the adult brain of Drosophila.
    Ayaz D; Leyssen M; Koch M; Yan J; Srahna M; Sheeba V; Fogle KJ; Holmes TC; Hassan BA
    J Neurosci; 2008 Jun; 28(23):6010-21. PubMed ID: 18524906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondria on the Road to Power Axonal Regeneration.
    Patrón LA; Zinsmaier KE
    Neuron; 2016 Dec; 92(6):1152-1154. PubMed ID: 28009268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methods for Quantitative Analysis of Axonal Cargo Transport.
    Alloatti M; Bruno L; Falzone TL
    Methods Mol Biol; 2018; 1727():217-226. PubMed ID: 29222784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upregulation of activating transcription factor 3 (ATF3) by intrinsic CNS neurons regenerating axons into peripheral nerve grafts.
    Campbell G; Hutchins K; Winterbottom J; Grenningloh G; Lieberman AR; Anderson PN
    Exp Neurol; 2005 Apr; 192(2):340-7. PubMed ID: 15755551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Slow transport of the cytoskeleton after axonal injury.
    McKerracher L; Hirscheimer A
    J Neurobiol; 1992 Jul; 23(5):568-78. PubMed ID: 1279115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration.
    Hou ST; Jiang SX; Smith RA
    Int Rev Cell Mol Biol; 2008; 267():125-81. PubMed ID: 18544498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Class II HDACs and neuronal regeneration.
    Tang BL
    J Cell Biochem; 2014 Jul; 115(7):1225-33. PubMed ID: 24604703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Axonal shearing in mature cortical neurons induces attempted regeneration and the reestablishment of neurite polarity.
    Blizzard CA; King AE; Haas MA; O'Toole DA; Vickers JC; Dickson TC
    Brain Res; 2009 Dec; 1300():24-36. PubMed ID: 19715682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of mitochondria in axon development and regeneration.
    Smith GM; Gallo G
    Dev Neurobiol; 2018 Mar; 78(3):221-237. PubMed ID: 29030922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new method for quantifying mitochondrial axonal transport.
    Chen M; Li Y; Yang M; Chen X; Chen Y; Yang F; Lu S; Yao S; Zhou T; Liu J; Zhu L; Du S; Wu JY
    Protein Cell; 2016 Nov; 7(11):804-819. PubMed ID: 27225265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bioenergetics of neuronal morphogenesis and regeneration: Frontiers beyond the mitochondrion.
    Gallo G
    Dev Neurobiol; 2020 Jul; 80(7-8):263-276. PubMed ID: 32750228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes.
    Cai Q; Gerwin C; Sheng ZH
    J Cell Biol; 2005 Sep; 170(6):959-69. PubMed ID: 16157705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic and compartmentalized platforms for neurobiological research.
    Taylor AM; Jeon NL
    Crit Rev Biomed Eng; 2011; 39(3):185-200. PubMed ID: 21967302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of mitochondrial transport in neurons.
    Zhou B; Lin MY; Sun T; Knight AL; Sheng ZH
    Methods Enzymol; 2014; 547():75-96. PubMed ID: 25416353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Axonal transport declines with age in two distinct phases separated by a period of relative stability.
    Milde S; Adalbert R; Elaman MH; Coleman MP
    Neurobiol Aging; 2015 Feb; 36(2):971-81. PubMed ID: 25443288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons.
    Moutaux E; Christaller W; Scaramuzzino C; Genoux A; Charlot B; Cazorla M; Saudou F
    Sci Rep; 2018 Sep; 8(1):13429. PubMed ID: 30194421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective rab11 transport and the intrinsic regenerative ability of CNS axons.
    Koseki H; Donegá M; Lam BY; Petrova V; van Erp S; Yeo GS; Kwok JC; Ffrench-Constant C; Eva R; Fawcett JW
    Elife; 2017 Aug; 6():. PubMed ID: 28829741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic devices as model platforms of CNS injury-ischemia to study axonal regeneration by regulating mitochondrial transport and bioenergetic metabolism.
    Huang N; Sheng ZH
    Cell Regen; 2022 Oct; 11(1):33. PubMed ID: 36184647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.