These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28926698)

  • 1. Quantification of Lignin and Its Structural Features in Plant Biomass Using
    van Erven G; de Visser R; Merkx DWH; Strolenberg W; de Gijsel P; Gruppen H; Kabel MA
    Anal Chem; 2017 Oct; 89(20):10907-10916. PubMed ID: 28926698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fungal degradation of wheat straw cell wall using different analytical methods from ruminant nutrition perspective.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jun; 99(8):4054-4062. PubMed ID: 30737799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving ruminal digestibility of various wheat straw types by white-rot fungi.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose.
    Fu X; Zhang J; Gu X; Yu H; Chen S
    Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid quantification of major reaction products formed during thermochemical pretreatment of lignocellulosic biomass using GC-MS.
    Humpula JF; Chundawat SP; Vismeh R; Jones AD; Balan V; Dale BE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):1018-22. PubMed ID: 21444255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography-mass spectrometry with a Deans switch.
    Zheng R; Zhang H; Zhao J; Lei M; Huang H
    J Chromatogr A; 2011 Aug; 1218(31):5319-27. PubMed ID: 21722910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of wheat straw lignin structure by comprehensive NMR analysis.
    Zeng J; Helms GL; Gao X; Chen S
    J Agric Food Chem; 2013 Nov; 61(46):10848-57. PubMed ID: 24143908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the fast pyrolysis of lignin.
    Patwardhan PR; Brown RC; Shanks BH
    ChemSusChem; 2011 Nov; 4(11):1629-36. PubMed ID: 21948630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol.
    Azadfar M; Gao AH; Bule MV; Chen S
    Int J Biol Macromol; 2015 Apr; 75():58-66. PubMed ID: 25603142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods.
    del Río JC; Rencoret J; Prinsen P; Martínez ÁT; Ralph J; Gutiérrez A
    J Agric Food Chem; 2012 Jun; 60(23):5922-35. PubMed ID: 22607527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.
    del Río JC; Gutiérrez A; Martínez AT
    Rapid Commun Mass Spectrom; 2004; 18(11):1181-5. PubMed ID: 15164346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose.
    Galletti GC; Bocchini P
    Rapid Commun Mass Spectrom; 1995; 9(9):815-26. PubMed ID: 7655075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR.
    Habets S; de Wild PJ; Huijgen WJJ; van Eck ERH
    Bioresour Technol; 2013 Oct; 146():585-590. PubMed ID: 23973979
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Bergs M; Völkering G; Kraska T; Pude R; Do XT; Kusch P; Monakhova Y; Konow C; Schulze M
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.
    González-Vila FJ; Tinoco P; Almendros G; Martin F
    J Agric Food Chem; 2001 Mar; 49(3):1128-31. PubMed ID: 11312823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications.
    Butler E; Devlin G; Meier D; McDonnell K
    Bioresour Technol; 2013 Mar; 131():202-9. PubMed ID: 23347928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking.
    Gao AH; Bule MV; Laskar DD; Chen S
    J Agric Food Chem; 2012 Sep; 60(35):8632-9. PubMed ID: 22882009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock.
    Lu K; Hao N; Meng X; Luo Z; Tuskan GA; Ragauskas AJ
    Bioresour Technol; 2019 Oct; 289():121589. PubMed ID: 31207412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis.
    Geng J; Wang WL; Yu YX; Chang JM; Cai LP; Shi SQ
    Bioresour Technol; 2017 Mar; 227():1-6. PubMed ID: 28012373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts.
    Zeng J; Singh D; Chen S
    Bioresour Technol; 2011 Feb; 102(3):3206-14. PubMed ID: 21111608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.