These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28926700)

  • 1. Chemical Dynamics Simulations of Energy Transfer for Propylbenzene Cation and He Collisions.
    Kim H; Saha B; Pratihar S; Majumder M; Hase WL
    J Phys Chem A; 2017 Oct; 121(40):7494-7502. PubMed ID: 28926700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.
    Kim H; Paul AK; Pratihar S; Hase WL
    J Phys Chem A; 2016 Jul; 120(27):5187-96. PubMed ID: 27182630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Dynamics Simulation of Energy Transfer: Propylbenzene Cation and N
    Kim H; Bhandari HN; Pratihar S; Hase WL
    J Phys Chem A; 2019 Mar; 123(12):2301-2309. PubMed ID: 30794410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of intermolecular energy transfer from vibrationally excited benzene in mixed nitrogen-benzene baths at 140 K and 300 K.
    Ahamed SS; Kim H; Paul AK; West NA; Winner JD; Donzis DA; North SW; Hase WL
    J Chem Phys; 2020 Oct; 153(14):144116. PubMed ID: 33086796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface.
    Tasić US; Yan T; Hase WL
    J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified model for simulating liquid and gas phase, intermolecular energy transfer: N₂ + C₆F₆ collisions.
    Paul AK; Kohale SC; Pratihar S; Sun R; North SW; Hase WL
    J Chem Phys; 2014 May; 140(19):194103. PubMed ID: 24852526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar.
    Wang H; Wen K; You X; Mao Q; Luo KH; Pilling MJ; Robertson SH
    J Chem Phys; 2019 Jul; 151(4):044301. PubMed ID: 31370521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.
    Paul AK; West NA; Winner JD; Bowersox RDW; North SW; Hase WL
    J Chem Phys; 2018 Oct; 149(13):134101. PubMed ID: 30292226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collisional Intermolecular Energy Transfer from a N
    Paul AK; Donzis D; Hase WL
    J Phys Chem A; 2017 Jun; 121(21):4049-4057. PubMed ID: 28485962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.
    Li Z; Sansom R; Bonella S; Coker DF; Mullin AS
    J Phys Chem A; 2005 Sep; 109(34):7657-66. PubMed ID: 16834139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows.
    Lombardi A; Faginas-Lago N; Pacifici L; Grossi G
    J Chem Phys; 2015 Jul; 143(3):034307. PubMed ID: 26203027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of energy transfer from vibrationally excited CO2 molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas.
    Lombardi A; Faginas-Lago N; Pacifici L; Costantini A
    J Phys Chem A; 2013 Nov; 117(45):11430-40. PubMed ID: 24117231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks.
    Cooksy AL; King HF; Richardson WH
    J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlated ab initio investigations on the intermolecular and intramolecular potential energy surfaces in the ground electronic state of the O2(-)(X2Πg)-HF(X1Σ+) complex.
    Fawzy WM; Elsayed M; Zhang Y
    J Chem Phys; 2013 Jan; 138(1):014304. PubMed ID: 23298038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for energy transfer in collisions of atoms with highly excited molecules.
    Houston PL; Conte R; Bowman JM
    J Phys Chem A; 2015 May; 119(20):4695-710. PubMed ID: 25907301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical unimolecular kinetics for CH4 + M ⇄ CH3 + H + M in eight baths, M = He, Ne, Ar, Kr, H2, N2, CO, and CH4.
    Jasper AW; Miller JA
    J Phys Chem A; 2011 Jun; 115(24):6438-55. PubMed ID: 21598912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental studies of collision-induced electronic energy transfer from v=0-3 of the E(0g +) ion-pair state of Br2: collisions with He and Ar.
    Hutchison JM; O'Hern RR; Stephenson TA; Suleimanov YV; Buchachenko AA
    J Chem Phys; 2008 May; 128(18):184311. PubMed ID: 18532816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling Charge Transfer in Weak Chemical Bonds: Insights from the Chemistry of Helium.
    Nunzi F; Cesario D; Pirani F; Belpassi L; Tarantelli F
    Chemphyschem; 2018 Jun; 19(12):1476-1485. PubMed ID: 29537704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.