These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28926703)

  • 1. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin.
    Jiang F; Qian C; Esker AR; Roman M
    J Phys Chem B; 2017 Oct; 121(41):9607-9620. PubMed ID: 28926703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.
    Fritz C; Ferrer A; Salas C; Jameel H; Rojas OJ
    Biomacromolecules; 2015 Dec; 16(12):3878-88. PubMed ID: 26565921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the action of Tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: Pretreatment, hydrolysis conditions and lignin structure.
    Chen YA; Zhou Y; Qin Y; Liu D; Zhao X
    Bioresour Technol; 2018 Dec; 269():329-338. PubMed ID: 30195225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.
    Pereira A; Hoeger IC; Ferrer A; Rencoret J; Del Rio JC; Kruus K; Rahikainen J; Kellock M; Gutiérrez A; Rojas OJ
    Biomacromolecules; 2017 Apr; 18(4):1322-1332. PubMed ID: 28287708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.
    Martín-Sampedro R; Rahikainen JL; Johansson LS; Marjamaa K; Laine J; Kruus K; Rojas OJ
    Biomacromolecules; 2013 Apr; 14(4):1231-9. PubMed ID: 23484974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Nonionic Surfactant Adsorption on Enzymatic Hydrolysis of Oil Palm Fruit Bunch.
    Parnthong J; Kungsanant S; Chavadej S
    Appl Biochem Biotechnol; 2018 Dec; 186(4):895-908. PubMed ID: 29785688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.
    Zhou Y; Chen H; Qi F; Zhao X; Liu D
    Bioresour Technol; 2015 Apr; 182():136-143. PubMed ID: 25689307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulases adsorb reversibly on biomass lignin.
    Djajadi DT; Pihlajaniemi V; Rahikainen J; Kruus K; Meyer AS
    Biotechnol Bioeng; 2018 Dec; 115(12):2869-2880. PubMed ID: 30132790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulase adsorption and saccharification.
    Seo DJ; Fujita H; Sakoda A
    Bioresour Technol; 2011 Oct; 102(20):9605-12. PubMed ID: 21852116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo.
    Huang C; Zhao X; Zheng Y; Lin W; Lai C; Yong Q; Ragauskas AJ; Meng X
    Bioresour Technol; 2022 Sep; 360():127524. PubMed ID: 35764283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose.
    Lin X; Wu L; Huang S; Qin Y; Qiu X; Lou H
    Carbohydr Polym; 2019 Mar; 207():52-58. PubMed ID: 30600035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose.
    Li Y; Sun Z; Ge X; Zhang J
    Biotechnol Biofuels; 2016; 9():20. PubMed ID: 26816530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.
    Arslan B; Colpan M; Ju X; Zhang X; Kostyukova A; Abu-Lail NI
    Biomacromolecules; 2016 May; 17(5):1705-15. PubMed ID: 27065303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.
    Tu M; Pan X; Saddler JN
    J Agric Food Chem; 2009 Sep; 57(17):7771-8. PubMed ID: 19722706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption.
    Heiss-Blanquet S; Zheng D; Lopes Ferreira N; Lapierre C; Baumberger S
    Bioresour Technol; 2011 May; 102(10):5938-46. PubMed ID: 21450460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates.
    Jiang F; Kittle JD; Tan X; Esker AR; Roman M
    Langmuir; 2013 Mar; 29(10):3280-91. PubMed ID: 23452241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.
    Yu Z; Gwak KS; Treasure T; Jameel H; Chang HM; Park S
    ChemSusChem; 2014 Jul; 7(7):1942-50. PubMed ID: 24903047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding of promoting enzymatic hydrolysis of combined hydrothermal and deep eutectic solvent pretreated poplars by Tween 80.
    Hou S; Shen B; Zhang D; Li R; Xu X; Wang K; Lai C; Yong Q
    Bioresour Technol; 2022 Oct; 362():127825. PubMed ID: 36031133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.