These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28927531)

  • 1. Discriminating RNA variants with single-molecule allele-specific FISH.
    Urbanek MO; Krzyzosiak WJ
    Mutat Res Rev Mutat Res; 2017 Jul; 773():230-241. PubMed ID: 28927531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Methods for Single-Molecule Fluorescence In Situ Hybridization and Immunofluorescence in Caenorhabditis elegans Embryos.
    Parker DM; Winkenbach LP; Parker A; Boyson S; Nishimura EO
    Curr Protoc; 2021 Nov; 1(11):e299. PubMed ID: 34826343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA FISH for detecting expanded repeats in human diseases.
    Urbanek MO; Krzyzosiak WJ
    Methods; 2016 Apr; 98():115-123. PubMed ID: 26615955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells.
    Orjalo AV; Johansson HE
    Methods Mol Biol; 2016; 1402():119-134. PubMed ID: 26721487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules.
    Kwon S
    BMB Rep; 2013 Feb; 46(2):65-72. PubMed ID: 23433107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA fluorescence in situ hybridization for high-content screening.
    Querido E; Dekakra-Bellili L; Chartrand P
    Methods; 2017 Aug; 126():149-155. PubMed ID: 28694064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and Quantification of Subcellular RNA Localization Using Single-Molecule RNA Fluorescence In Situ Hybridization.
    Arora A; Goering R; Velez PT; Taliaferro JM
    Methods Mol Biol; 2022; 2404():247-266. PubMed ID: 34694613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing of BRAF transcripts and characterization of C-terminally truncated B-Raf isoforms in colorectal cancer.
    Hirschi B; Kolligs FT
    Int J Cancer; 2013 Aug; 133(3):590-6. PubMed ID: 23354951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH-quant v2: a scalable and modular tool for smFISH image analysis.
    Imbert A; Ouyang W; Safieddine A; Coleno E; Zimmer C; Bertrand E; Walter T; Mueller F
    RNA; 2022 Jun; 28(6):786-795. PubMed ID: 35347070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of alternatively spliced transcripts in leukemia cell lines by minisequencing on microarrays.
    Milani L; Fredriksson M; Syvänen AC
    Clin Chem; 2006 Feb; 52(2):202-11. PubMed ID: 16384885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution.
    Batish M; Tyagi S
    Curr Protoc Neurosci; 2019 Sep; 89(1):e79. PubMed ID: 31532916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D and 3D FISH of expanded repeat RNAs in human lymphoblasts.
    Urbanek MO; Michalak M; Krzyzosiak WJ
    Methods; 2017 May; 120():49-57. PubMed ID: 28404480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization.
    Lin C; Jiang M; Liu L; Chen X; Zhao Y; Chen L; Hong Y; Wang X; Hong C; Yao X; Ke R
    N Biotechnol; 2021 Mar; 61():116-123. PubMed ID: 33301924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. smFISH for Plants.
    Hani S; Mercier C; David P; Desnos T; Escudier JM; Bertrand E; Nussaume L
    Methods Mol Biol; 2024; 2784():87-100. PubMed ID: 38502480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reference genes for quantitative Arabidopsis single molecule RNA fluorescence in situ hybridization.
    Duncan S; Johansson HE; Ding Y
    J Exp Bot; 2023 Apr; 74(7):2405-2415. PubMed ID: 36579724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single molecule fluorescence in situ hybridisation for quantitating post-transcriptional regulation in Drosophila brains.
    Yang L; Titlow J; Ennis D; Smith C; Mitchell J; Young FL; Waddell S; Ish-Horowicz D; Davis I
    Methods; 2017 Aug; 126():166-176. PubMed ID: 28651965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells.
    Coassin SR; Orjalo AV; Semaan SJ; Johansson HE
    Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule Fluorescence
    Haimovich G; Gerst JE
    Bio Protoc; 2018 Nov; 8(21):e3070. PubMed ID: 34532531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging.
    Safieddine A; Coleno E; Lionneton F; Traboulsi AM; Salloum S; Lecellier CH; Gostan T; Georget V; Hassen-Khodja C; Imbert A; Mueller F; Walter T; Peter M; Bertrand E
    Nat Protoc; 2023 Jan; 18(1):157-187. PubMed ID: 36280749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.